Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sharon Yee is active.

Publication


Featured researches published by Sharon Yee.


Nature Medicine | 2007

Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL

Klaus W Wagner; Elizabeth Punnoose; Thomas Januario; David A. Lawrence; Robert M. Pitti; Kate Lancaster; Dori Lee; Melissa von Goetz; Sharon Yee; Klara Totpal; Ling Huw; Viswanatham Katta; Guy Cavet; Sarah G. Hymowitz; Lukas Amler; Avi Ashkenazi

Apo2L/TRAIL stimulates cancer cell death through the proapoptotic receptors DR4 and DR5, but the determinants of tumor susceptibility to this ligand are not fully defined. mRNA expression of the peptidyl O-glycosyltransferase GALNT14 correlated with Apo2L/TRAIL sensitivity in pancreatic carcinoma, non–small-cell lung carcinoma and melanoma cell lines, and up to 30% of samples from various human malignancies showed GALNT14 overexpression. RNA interference of GALNT14 reduced cellular Apo2L/TRAIL sensitivity, whereas overexpression increased responsiveness. Biochemical analysis of DR5 identified several ectodomain O-(N-acetyl galactosamine–galactose–sialic acid) structures. Sequence comparison predicted conserved extracellular DR4 and DR5 O-glycosylation sites; progressive mutation of the DR5 sites attenuated apoptotic signaling. O-glycosylation promoted ligand-stimulated clustering of DR4 and DR5, which mediated recruitment and activation of the apoptosis-initiating protease caspase-8. These results uncover a new link between death-receptor O-glycosylation and apoptotic signaling, providing potential predictive biomarkers for Apo2L/TRAIL-based cancer therapy.


Magnetic Resonance in Medicine | 2010

Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis

Sharon E. Ungersma; Glenn Pacheco; Calvin Ho; Sharon Yee; Jed Ross; Nicholas van Bruggen; Franklin Peale; Sarajane Ross; Richard A. D. Carano

Imaging of tumor microvasculature has become an important tool for studying angiogenesis and monitoring antiangiogenic therapies. Ultrasmall paramagnetic iron oxide contrast agents for indirect imaging of vasculature offer a method for quantitative measurements of vascular biomarkers such as vessel size index, blood volume, and vessel density. Here, this technique is validated with direct comparisons to ex vivo micro‐CT angiography and histologic vessel measurements, showing significant correlations between in vivo vascular MRI measurements and ex vivo structural vessel measurements. The sensitivity of the MRI vascular parameters is also demonstrated, in combination with a multispectral analysis technique for segmenting tumor tissue to restrict the analysis to viable tumor tissue and exclude regions of necrosis. It is shown that this viable tumor segmentation increases sensitivity for detection of significant effects on blood volume and vessel density by two antiangiogenic therapeutics (anti‐VEGF and anti‐neuropilin‐1) on an HM7 colorectal tumor model. Anti‐VEGF reduced blood volume by 36 ± 3% (P < 0.0001) and vessel density by 52 ± 3% (P < 0.0001) at 48 h posttreatment; the effects of anti‐neuropilin‐1 were roughly half as strong with a reduction in blood volume of 18 ± 6% (P < 0.05) and a reduction in vessel density of 33 ± 5% (P < 0.05) at 48 h posttreatment. Magn Reson Med 63:1637–1647, 2010.


Science Translational Medicine | 2015

Targeting LGR5 + cells with an antibody-drug conjugate for the treatment of colon cancer

Melissa R. Junttila; Weiguang Mao; Xi Wang; Bu-Er Wang; Thinh Pham; John A. Flygare; Shang-Fan Yu; Sharon Yee; David M. Goldenberg; Carter Fields; Jeffrey Eastham-Anderson; Mallika Singh; Rajesh Vij; Jo-Anne Hongo; Ron Firestein; Melissa Schutten; Kelly Flagella; Paul Polakis; Andrew G. Polson

An antibody-drug conjugate targeting LGR5 effectively treats intestinal cancer in preclinical models. Stemming the progression of cancer LGR5 is a well-known marker of intestinal cancer stem cells, which makes it an attractive target for anticancer treatments. Unfortunately, it is also found in healthy intestinal stem cells, giving rise to concerns about the potential toxicity of such treatments. Now, Junttila et al. used preclinical models of intestinal cancer to demonstrate that targeting LGR5 with an antibody-drug conjugate is effective for shrinking tumors without damaging the surrounding normal tissues. These observations of preclinical effectiveness as well as safety suggest that targeting LGR5-expressing cells may be a viable therapeutic strategy and a candidate for evaluation in human studies. Cancer stem cells (CSCs) are hypothesized to actively maintain tumors similarly to how their normal counterparts replenish differentiated cell types within tissues, making them an attractive therapeutic target for the treatment of cancer. Because most CSC markers also label normal tissue stem cells, it is unclear how to selectively target them without compromising normal tissue homeostasis. We evaluated a strategy that targets the cell surface leucine-rich repeat–containing G protein–coupled receptor 5 (LGR5), a well-characterized tissue stem cell and CSC marker, with an antibody conjugated to distinct cytotoxic drugs. One antibody-drug conjugate (ADC) demonstrated potent tumor efficacy and safety in vivo. Furthermore, the ADC decreased tumor size and proliferation, translating to improved survival in a genetically engineered model of intestinal tumorigenesis. These data demonstrate that ADCs can be leveraged to exploit differences between normal and cancer stem cells to successfully target gastrointestinal cancers.


Genes & Development | 2014

An integrative analysis of colon cancer identifies an essential function for PRPF6 in tumor growth

Adam S. Adler; Mark L. McCleland; Sharon Yee; Murat Yaylaoglu; Sofia Hussain; Ely Cosino; Gabriel Quinones; Zora Modrusan; Somasekar Seshagiri; Eric Torres; Vivek S. Chopra; Benjamin Haley; Zemin Zhang; Elizabeth Blackwood; Mallika Singh; Melissa R. Junttila; Jean Philippe Stephan; Jinfeng Liu; Gregoire Pau; Eric R. Fearon; Zhaoshi Jiang; Ron Firestein

The spliceosome machinery is composed of multimeric protein complexes that generate a diverse repertoire of mRNA through coordinated splicing of heteronuclear RNAs. While somatic mutations in spliceosome components have been discovered in several cancer types, the molecular bases and consequences of spliceosome aberrations in cancer are poorly understood. Here we report for the first time that PRPF6, a member of the tri-snRNP (small ribonucleoprotein) spliceosome complex, drives cancer proliferation by preferential splicing of genes associated with growth regulation. Inhibition of PRPF6 and other tri-snRNP complex proteins, but not other snRNP spliceosome complexes, selectively abrogated growth in cancer cells with high tri-snRNP levels. High-resolution transcriptome analyses revealed that reduced PRPF6 alters the constitutive and alternative splicing of a discrete number of genes, including an oncogenic isoform of the ZAK kinase. These findings implicate an essential role for PRPF6 in cancer via splicing of distinct growth-related gene products.


Molecular Cancer Therapeutics | 2013

Combination Drug Scheduling Defines a “Window of Opportunity” for Chemopotentiation of Gemcitabine by an Orally Bioavailable, Selective ChK1 Inhibitor, GNE-900

Elizabeth Blackwood; Jennifer Epler; Ivana Yen; Michael Flagella; Thomas O'Brien; Marie Evangelista; Stephen Schmidt; Yang Xiao; Jonathan Choi; Kaska Kowanetz; Judi Ramiscal; Kenton Wong; Diana Jakubiak; Sharon Yee; Gary Cain; Lewis J. Gazzard; Karen Williams; Jason S. Halladay; Peter K. Jackson; Shiva Malek

Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2–M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabines antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor. Mol Cancer Ther; 12(10); 1968–80. ©2013 AACR.


Nuclear Medicine and Biology | 2013

ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models

Annie Ogasawara; Jeff N. Tinianow; Alexander N. Vanderbilt; Herman S. Gill; Sharon Yee; Judith E. Flores; Simon-Peter Williams; Avi Ashkenazi; Jan Marik

UNLABELLED An immunoPET imaging probe for the detection of phosphatidylserine was developed and tested in animal models of human cancer treated with pro-apoptotic therapy. We hypothesized that the relatively long plasma half-life of a probe based on a full-length antibody coupled with a residualizing radionuclide would be able to catch the wave of drug-induced apoptosis and lead to a specific accumulation in apoptotic tumor tissue. METHODS The imaging probe is based on a ⁸⁹Zr-labeled monoclonal antibody PGN635 targeting phosphatidylserine. The probe was evaluated pre-clinically in four tumor xenograft models: one studied treatment with paclitaxel to trigger the intrinsic apoptotic pathway, and three others interrogated treatment with an agonistic death-receptor monoclonal antibody to engage the extrinsic apoptotic pathway. RESULTS High accumulation of ⁸⁹Zr-PGN635 was observed in treated tumors undergoing apoptosis reaching 30 %ID/g and tumor-to-blood ratios up to 13. The tumor uptake in control groups treated with vehicle or imaged with a non-binding antibody probe was significantly lower. CONCLUSIONS The results demonstrate the ability of ⁸⁹Zr-PGN635 to image drug-induced apoptosis in animal models and corroborate our hypothesis that radiolabeled antibodies binding to intracellular targets transiently exposed on the cell surface during apoptosis can be employed for detection of tumor response to therapy.


Molecular Cancer Therapeutics | 2017

Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers

Thomas H. Pillow; Melissa Schutten; Shang-Fan Yu; Rachana Ohri; Jack Sadowsky; Kirsten Achilles Poon; Willy Solis; Fiona Zhong; Geoffrey Del Rosario; Mary Ann T. Go; Jeffrey Lau; Sharon Yee; Jintang He; Luna Liu; Carl Ng; Keyang Xu; Douglas D. Leipold; Amrita V. Kamath; Donglu Zhang; Luke Masterson; Stephen J. Gregson; Philip W. Howard; Fan Fang; Jinhua Chen; Janet Gunzner-Toste; Katherine K. Kozak; Susan D. Spencer; Paul Polakis; Andrew G. Polson; John A. Flygare

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody–drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871–8. ©2017 AACR.


Journal of Medicinal Chemistry | 2015

Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1

Lewis J. Gazzard; Karen Williams; Huifen Chen; Lorraine Axford; Elizabeth Blackwood; Brenda Burton; Kerry L. Chapman; Peter Crackett; Joy Drobnick; Charles Ellwood; Jennifer Epler; Michael Flagella; Emanuela Gancia; Matthew Gill; Simon Charles Goodacre; Jason S. Halladay; Joanne Frances Mary Hewitt; Hazel J. Hunt; Samuel Kintz; Joseph P. Lyssikatos; Calum Macleod; Sarah Major; Guillaume Médard; Raman Narukulla; Judi Ramiscal; Stephen Schmidt; Eileen Seward; Christian Wiesmann; Ping Wu; Sharon Yee

Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model.


Clinical Cancer Research | 2016

Balancing efficacy and safety of an anti-DLL4 antibody through pharmacokinetic modulation

Jessica Couch; Gu Zhang; Joseph Beyer; Christina L.Zuch de Zafra; Priyanka Gupta; Amrita V. Kamath; Nicholas Lewin-Koh; Jacqueline M. Tarrant; Krishna P. Allamneni; Gary Cain; Sharon Yee; Sarajane Ross; Ryan Cook; Siao Ping Tsai; Jane Ruppel; John Ridgway; Maciej Paluch; Philip E. Hass; Jayme Franklin; Minhong Yan

Purpose: Although agents targeting Delta-like ligand 4 (DLL4) have shown great promise for angiogenesis-based cancer therapy, findings in recent studies have raised serious safety concerns. To further evaluate the potential for therapeutic targeting of the DLL4 pathway, we pursued a novel strategy to reduce toxicities related to DLL4 inhibition by modulating the pharmacokinetic (PK) properties of an anti-DLL4 antibody. Experimental Design: The F(ab′)2 fragment of anti-DLL4 antibody (anti-DLL4 F(ab′)2) was generated and assessed in efficacy and toxicity studies. Results: Anti-DLL4 F(ab′)2 enables greater control over the extent and duration of DLL4 inhibition, such that intermittent dosing of anti-DLL4 F(ab′)2 can maintain significant antitumor activity while markedly mitigating known toxicities associated with continuous pathway inhibition. Conclusions: PK modulation has potentially broad implications for development of antibody-based therapeutics. Our safety studies with anti-DLL4 F(ab′)2 also provide new evidence reinforcing the notion that the DLL4 pathway is extremely sensitive to pharmacologic perturbation, further underscoring the importance of exercising caution to safely harness this potent pathway in humans. Clin Cancer Res; 22(6); 1469–79. ©2015 AACR.


Bioconjugate Chemistry | 2017

Attachment Site Cysteine Thiol pKa Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody–Drug Conjugates

Breanna S. Vollmar; Binqing Wei; Rachana Ohri; Jianhui Zhou; Jintang He; Shang-Fan Yu; Douglas D. Leipold; Ely Cosino; Sharon Yee; Aimee Fourie-O’Donohue; Guangmin Li; Gail Lewis Phillips; Katherine R. Kozak; Amrita Kamath; Keyang Xu; Genee Lee; Greg A. Lazar; Hans K. Erickson

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.

Collaboration


Dive into the Sharon Yee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Lawrence

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klara Totpal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge