Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shashank J. Patel is active.

Publication


Featured researches published by Shashank J. Patel.


Nature | 2017

Identification of essential genes for cancer immunotherapy.

Shashank J. Patel; Neville E. Sanjana; Rigel J. Kishton; Arash Eidizadeh; Suman K. Vodnala; Maggie Cam; Jared J. Gartner; Li Jia; Seth M. Steinberg; Tori N. Yamamoto; Anand Merchant; Gautam U. Mehta; Anna Chichura; Ophir Shalem; Eric Tran; Robert L. Eil; Madhusudhanan Sukumar; Eva Perez Guijarro; Chi-Ping Day; Paul D. Robbins; Steve Feldman; Glenn Merlino; Feng Zhang; Nicholas P. Restifo

Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR–Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.


Nature | 2016

Ionic immune suppression within the tumour microenvironment limits T cell effector function.

Robert L. Eil; Suman K. Vodnala; David Clever; Christopher A. Klebanoff; Madhusudhanan Sukumar; Jenny H. Pan; Douglas C. Palmer; Alena Gros; Tori N. Yamamoto; Shashank J. Patel; Geoffrey Guittard; Zhiya Yu; Valentina Carbonaro; Klaus Okkenhaug; David S. Schrump; W. Marston Linehan; Rahul Roychoudhuri; Nicholas P. Restifo

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt–mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt–mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.


Cell Metabolism | 2016

Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy.

Madhusudhanan Sukumar; Jie Liu; Gautam U. Mehta; Shashank J. Patel; Rahul Roychoudhuri; Joseph G. Crompton; Christopher A. Klebanoff; Yun Ji; Peng Li; Zhiya Yu; Greg Whitehill; David Clever; Robert L. Eil; Douglas C. Palmer; Suman Mitra; Mahadev Rao; Keyvan Keyvanfar; David S. Schrump; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Warren J. Leonard; Pawel Muranski; Toren Finkel; Nicholas P. Restifo

Long-term survival and antitumor immunity of adoptively transferred CD8(+) T cells is dependent on their metabolic fitness, but approaches to isolate therapeutic T cells based on metabolic features are not well established. Here we utilized a lipophilic cationic dye tetramethylrhodamine methyl ester (TMRM) to identify and isolate metabolically robust T cells based on their mitochondrial membrane potential (ΔΨm). Comprehensive metabolomic and gene expression profiling demonstrated global features of improved metabolic fitness in low-ΔΨm-sorted CD8(+) T cells. Transfer of these low-ΔΨm T cells was associated with superior long-term in vivo persistence and an enhanced capacity to eradicate established tumors compared with high-ΔΨm cells. Use of ΔΨm-based sorting to enrich for cells with superior metabolic features was observed in CD8(+), CD4(+) T cell subsets, and long-term hematopoietic stem cells. This metabolism-based approach to cell selection may be broadly applicable to therapies involving the transfer of HSC or lymphocytes for the treatment of viral-associated illnesses and cancer.


Nature Immunology | 2016

BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers

Rahul Roychoudhuri; David Clever; Peng Li; Yoshiyuki Wakabayashi; Kylie M. Quinn; Christopher A. Klebanoff; Yun Ji; Madhusudhanan Sukumar; Robert L. Eil; Zhiya Yu; Rosanne Spolski; Douglas C. Palmer; Jenny H. Pan; Shashank J. Patel; Derek C. Macallan; Giulia Fabozzi; Han Yu Shih; Yuka Kanno; Akihiko Muto; Jun Zhu; Luca Gattinoni; John J. O'Shea; Klaus Okkenhaug; Kazuhiko Igarashi; Warren J. Leonard; Nicholas P. Restifo

T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8+ T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.


Journal of Experimental Medicine | 2015

Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance

Douglas C. Palmer; Geoffrey Guittard; Zulmarie Franco; Joseph G. Crompton; Robert L. Eil; Shashank J. Patel; Yun Ji; Nicholas van Panhuys; Christopher A. Klebanoff; Madhusudhanan Sukumar; David Clever; Anna Chichura; Rahul Roychoudhuri; Rajat Varma; Ena Wang; Luca Gattinoni; Francesco M. Marincola; Lakshmi Balagopalan; Lawrence E. Samelson; Nicholas P. Restifo

Palmer et al. find that Cish, a member of the SOCS family, is induced by TCR stimulation in CD8+ T cells and inhibits their functional avidity against tumor. The authors uncover a novel mechanism of suppression for a SOCS member.


Cellular & Molecular Immunology | 2015

Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape

Joseph G. Crompton; Manikandan Narayanan; Suresh Cuddapah; Rahul Roychoudhuri; Yun Ji; Wenjing Yang; Shashank J. Patel; Madhusudhanan Sukumar; Douglas C. Palmer; Weiqun Peng; Ena Wang; Francesco M. Marincola; Christopher A. Klebanoff; Keji Zhao; John S. Tsang; Luca Gattinoni; Nicholas P. Restifo

To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8+ T-cell subsets. Taken together, our results suggest that CD8+ lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.


PLOS Genetics | 2014

A Systems Genetics Approach Identifies CXCL14, ITGAX, and LPCAT2 as Novel Aggressive Prostate Cancer Susceptibility Genes

Kendra A. Williams; Minnkyong Lee; Ying Hu; Jonathan Andreas; Shashank J. Patel; Suiyuan Zhang; Peter S. Chines; Abdel G. Elkahloun; Settara C. Chandrasekharappa; J. Silvio Gutkind; Alfredo A. Molinolo; Nigel P.S. Crawford

Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.


Journal of Clinical Investigation | 2016

The transcription factor BACH2 promotes tumor immunosuppression

Rahul Roychoudhuri; Robert L. Eil; David Clever; Christopher A. Klebanoff; Madhusudhanan Sukumar; Francis M. Grant; Zhiya Yu; Gautam U. Mehta; Hui Liu; Ping Jin; Yun Ji; Douglas C. Palmer; Jenny H. Pan; Anna Chichura; Joseph G. Crompton; Shashank J. Patel; David F. Stroncek; Ena Wang; Francesco M. Marincola; Klaus Okkenhaug; Luca Gattinoni; Nicholas P. Restifo

The immune system has a powerful ability to recognize and kill cancer cells, but its function is often suppressed within tumors, preventing clearance of disease. Functionally diverse innate and adaptive cellular lineages either drive or constrain immune reactions within tumors. The transcription factor (TF) BACH2 regulates the differentiation of multiple innate and adaptive cellular lineages, but its role in controlling tumor immunity has not been elucidated. Here, we demonstrate that BACH2 is required to establish immunosuppression within tumors. Tumor growth was markedly impaired in Bach2-deficient mice and coincided with intratumoral activation of both innate and adaptive immunity. However, augmented tumor clearance in the absence of Bach2 was dependent upon the adaptive immune system. Analysis of tumor-infiltrating lymphocytes from Bach2-deficient mice revealed high frequencies of rapidly proliferating effector CD4+ and CD8+ T cells that expressed the inflammatory cytokine IFN-γ. Effector T cell activation coincided with a reduction in the frequency of intratumoral Foxp3+ Tregs. Mechanistically, BACH2 promoted tumor immunosuppression through Treg-mediated inhibition of intratumoral CD8+ T cells and IFN-γ. These findings demonstrate that BACH2 is a key component of the molecular program of tumor immunosuppression and identify therapeutic targets for the reversal of immunosuppression in cancer.


PLOS ONE | 2013

Germline Genetic Variation Modulates Tumor Progression and Metastasis in a Mouse Model of Neuroendocrine Prostate Carcinoma

Shashank J. Patel; Alfredo A. Molinolo; Silvio Gutkind; Nigel P.S. Crawford

Neuroendocrine (NE) differentiation has gained increased attention as a prostate cancer (PC) prognostic marker. The aim of this study is to determine whether host germline genetic variation influences tumor progression and metastasis in C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of aggressive NEPC. TRAMP mice were crossed to the eight progenitor strains of the Collaborative Cross recombinant inbred panel to address this. Tumor growth and metastasis burden were quantified in heterozygous transgene positive F1 male mice at 30 weeks of age. Compared to wild-type C57BL/6J-Tg(TRAMP)824Ng/J males, TRAMP x CAST/EiJ, TRAMP x NOD/ShiLtJ and TRAMP x NZO/HlLtJ F1 males displayed significant increases in tumor growth. Conversely, TRAMP x WSB/EiJ and TRAMP x PWK/PhJ F1 males displayed significant reductions in tumor growth. Interestingly, despite reduced tumor burden, TRAMP x WSB/EiJ males had an increased nodal metastasis burden. Patterns of distant pulmonary metastasis tended to follow the same patterns as that of local dissemination in each of the strains. All tumors and metastases displayed positive staining for NE markers, synaptophysin, and FOXA2. These experiments conclusively demonstrate that the introduction of germline variation by breeding modulates tumor growth, local metastasis burden, and distant metastasis frequency in this model of NEPC. These strains will be useful as model systems to facilitate the identification of germline modifier genes that promote the development of aggressive forms of PC.


Molecular Cancer Research | 2014

Metastasis-Associated Protein Ribosomal RNA Processing 1 Homolog B (RRP1B) Modulates Metastasis through Regulation of Histone Methylation

Minnkyong Lee; Amy M. Dworkin; Jens Lichtenberg; Shashank J. Patel; Niraj S. Trivedi; Derek Gildea; David M. Bodine; Nigel P.S. Crawford

Overexpression of ribosomal RNA processing 1 homolog B (RRP1B) induces a transcriptional profile that accurately predicts patient outcome in breast cancer. However, the mechanism by which RRP1B modulates transcription is unclear. Here, the chromatin-binding properties of RRP1B were examined to define how it regulates metastasis-associated transcription. To identify genome-wide RRP1B-binding sites, high-throughput ChIP-seq was performed in the human breast cancer cell line MDA-MB-231 and HeLa cells using antibodies against endogenous RRP1B. Global changes in repressive marks such as histone H3 lysine 9 trimethylation (H3K9me3) were also examined by ChIP-seq. Analysis of these samples identified 339 binding regions in MDA-MB-231 cells and 689 RRP1B-binding regions in HeLa cells. Among these, 136 regions were common to both cell lines. Gene expression analyses of these RRP1B-binding regions revealed that transcriptional repression is the primary result of RRP1B binding to chromatin. ChIP-reChIP assays demonstrated that RRP1B co-occupies loci with decreased gene expression with the heterochromatin-associated proteins, tripartite motif-containing protein 28 (TRIM28/KAP1), and heterochromatin protein 1-α (CBX5/HP1α). RRP1B occupancy at these loci was also associated with higher H3K9me3 levels, indicative of heterochromatinization mediated by the TRIM28/HP1α complex. In addition, RRP1B upregulation, which is associated with metastasis suppression, induced global changes in histone methylation. Implications: RRP1B, a breast cancer metastasis suppressor, regulates gene expression through heterochromatinization and transcriptional repression, which helps our understanding of mechanisms that drive prognostic gene expression in human breast cancer. Mol Cancer Res; 12(12); 1818–28. ©2014 AACR.

Collaboration


Dive into the Shashank J. Patel's collaboration.

Top Co-Authors

Avatar

Nicholas P. Restifo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rahul Roychoudhuri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas C. Palmer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Madhusudhanan Sukumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert L. Eil

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jenny H. Pan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Luca Gattinoni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nigel P.S. Crawford

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge