Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shawn D. Wettig is active.

Publication


Featured researches published by Shawn D. Wettig.


Current Gene Therapy | 2008

Gemini surfactants: a new family of building blocks for non-viral gene delivery systems.

Shawn D. Wettig; Ronald E. Verrall; Marianna Foldvari

Gemini surfactants provide a significant opportunity in the development of new non-viral delivery systems designed for gene therapy applications. This review summarizes the wide range of gemini surfactant structures that have been employed for DNA transfection in vitro. A general observation is that those structures capable of inducing a wide variety of polymorphic structures (lamellar, hexagonal, or cubic phases) demonstrate higher transfection efficiencies. Those compounds whose structures result in pH-dependent changes in aggregate structure similarly show higher levels of transfection. In vivo transfection using gemini surfactants has been demonstrated in only three cases, and in a recent study the transfection was linked to a specific therapeutic response.


Journal of Gene Medicine | 2007

Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles

Shawn D. Wettig; Ildiko Badea; McDonald Donkuru; Ronald E. Verrall; Marianna Foldvari

Increases in DNA transfection efficiencies for non‐viral vectors can be achieved through rational design of novel cationic building blocks. Based on previous results examining DNA condensation by polyamines, novel gemini surfactants have been designed that incorporate aza or imino substituents within the spacer group in order to increase interactions with DNA and potentially improve their DNA transfection ability.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies

McDonald Donkuru; Ildiko Badea; Shawn D. Wettig; Ronald E. Verrall; Mahmoud Elsabahy; Marianna Foldvari

Gene therapy is a technique utilized to treat diseases caused by missing, defective or overexpressing genes. Although viral vectors transfect cells efficiently, risks associated with their use limit their clinical applications. Nonviral delivery systems are safer, easier to manufacture, more versatile and cost effective. However, their transfection efficiency lags behind that of viral vectors. Many groups have dedicated considerable effort to improve the efficiency of nonviral gene delivery systems and are investigating complexes composed of DNA and soft materials such as lipids, polymers, peptides, dendrimers and gemini surfactants. The bottom-up approach in the design of these nanoparticles combines components essential for high levels of transfection, biocompatibility and tissue-targeting ability. This article provides an overview of the strategies employed to improve in vitro and in vivo transfection, focusing on the use of cationic lipids and surfactants as building blocks for nonviral gene delivery systems.


European Journal of Pharmaceutics and Biopharmaceutics | 2010

Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles

Peng Yang; Jagbir Singh; Shawn D. Wettig; Marianna Foldvari; Ronald E. Verrall; Ildiko Badea

Gemini surfactants are versatile gene delivery agents because of their ability to bind and compact DNA and their low cellular toxicity. Through modification of the alkyl tail length and the chemical nature of the spacer, new compounds can be generated with the potential to improve the efficiency of gene delivery. Amino acid (glycine and lysine) and dipeptide (glycyl-lysine and lysyl-lysine) substituted spacers of gemini surfactants were synthesized, and their efficiency of gene delivery was assessed in epithelial cells for topical cutaneous and mucosal applications. Three different epithelial cell lines, COS-7, PAM212 and Sf 1Ep cells, were transfected with plasmid DNA encoding for interferon gamma and green fluorescent protein complexed with the amino acid-substituted gemini compounds in the presence of 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine as a helper lipid. Gene expression was quantified by ELISA. Size, zeta potential and circular dichroism measurements were used to characterize the plasmid-gemini (PG) and plasmid-gemini surfactant-helper lipid (PGL) complexes. Gene expression was found to increase up to 72h and then declined by the 7th day. In general, the glycine-substituted surfactant showed consistently high gene expression in all three cell lines. Results of physicochemical and spectroscopic studies of the complexes indicate that substitution of the gemini spacer does not interfere with compaction of the DNA. The superior performance of these spacer-substituted gemini surfactants might be attributed to their better biocompatibility compared to the surfactants possessing unsubstituted spacers.


Physical Chemistry Chemical Physics | 2007

Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid.

Chuanzhong Wang; Xingfu Li; Shawn D. Wettig; Ildiko Badea; Marianna Foldvari; Ronald E. Verrall

Cationic gemini surfactants, N,N-bis(dimethylalkyl)-alpha,omega-alkanediammonium dibromide [C(m)H(2m+1)(CH(3))(2)N(+)(CH(2))(s)N(+)(CH(3))(2)C(m)H(2m+1) x 2 Br(-), or m-s-m], have proven to be effective synthetic vectors for gene delivery (transfection). Complexes (lipoplexes) of gemini compounds, where m = 12, s = 3, 12 and m = 18 : 1(oleyl), s = 2, 3, 6, with DNA have been investigated using isothermal titration calorimetry (ITC), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM) and circular dichroism (CD) techniques. The results show that lipoplex properties depend on the structural properties of the gemini surfactants, the presence of the helper lipid dioleoylphosphatidylethanolamine (DOPE), and the titration sequence. ITC data show that the interaction between DNA and gemini surfactants is endothermic and the observed enthalpy vs. charge ratio profile depends upon the titration sequence. Isoelectric points (IP) of lipoplex formation were estimated from the zeta potential measurements and show good agreement with the reaction endpoints (RP) obtained from ITC. DLS data indicate that DNA is condensed in the lipoplex. AFM images suggest that the lipoplex morphology changes from isolated globular-like aggregated particles to larger-size aggregates with great diversity in morphology. This change is further accentuated by the presence of DOPE in the lipoplexes. The results are interpreted in terms of some current models of lipoplex formation.


Journal of Experimental Nanoscience | 2006

Structural characterization of novel gemini non-viral DNA delivery systems for cutaneous gene therapy

Marianna Foldvari; Ildiko Badea; Shawn D. Wettig; Ronald E. Verrall; Mukasa Bagonluri

The structural and physicochemical properties of novel cationic lipid-based DNA complexes have been investigated for the purpose of designing micro/nano-scale self-assembling delivery systems for cutaneous gene therapy. DNA/gemini surfactant (spacer n = 3–16; chain m = 12 or 16) complexes (1 : 10 charge ratio), with or without dioleoylphosphatidyl-ethanolamine (DOPE), designed for cellular transfection, were generally in the range of 100–200 nm as demonstrated by atomic force microscopy and particle size analysis. Small-angle X-ray scattering measurements indicated that the DNA/gemini complexes lacked long-range order, whereas DNA/gemini/DOPE complexes exhibited lamellar and polymorphic phases other than hexagonal. Correlation studies using transfection efficiency data in PAM 212 keratinocytes and in vitro skin absorption indicated that formulations containing gemini surfactants having the ability to induce structures other than lamellar in the resulting complexes, generally exhibited greater transfection activity and cutaneous absorption.


Journal of Inorganic Biochemistry | 2003

Thermodynamic investigation of M-DNA: a novel metal ion–DNA complex

Shawn D. Wettig; David O. Wood; Jeremy S. Lee

The thermodynamics of formation of a novel divalent metal ion-DNA complex known as M-DNA have been investigated using an ethidium bromide (EB) fluorescence assay, and with isothermal titration calorimetry. The process of M-DNA formation was observed from the EB assay to be strongly temperature-dependent. The binding of Zn(2+) to calf thymus (42% GC content) and Escherichia coli (50% GC content) DNA at pH 8.5 exhibited an endothermic cooperative binding process at Zn(2+) concentrations of approximately 0.1 mM, indicating an entropy driven process. This binding process is consistent with a site-specific binding interaction, similar in nature to Z-DNA formation; however, the interaction occurs at much lower metal ion concentrations. The enthalpy of M-DNA formation for calf thymus DNA was determined to be 10.5+/-0.7 and 9+/-2 kJ/mbp at DNA concentrations of 100 and 50 microg ml(-1), respectively. An enthalpy of 13+/-3 kJ/mbp was obtained for M-DNA formation for 50 microg ml(-1) E. coli DNA. No evidence of M-DNA formation was observed in either DNA at pH 7.5 with Zn(2+) or at either pH 7.5 or 8.5 with Mg(2+).


Molecular Pharmaceutics | 2013

Effect of Chemical Permeation Enhancers on Stratum Corneum Barrier Lipid Organizational Structure and Interferon Alpha Permeability

Shadi H. Moghadam; Evi Saliaj; Shawn D. Wettig; Chilbert Dong; Marina V. Ivanova; J. Torin Huzil; Marianna Foldvari

The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.


Physical Chemistry Chemical Physics | 2007

Thermodynamic and aggregation properties of aza-and imino-substituted gemini surfactants designed for gene delivery

Shawn D. Wettig; Chuanzhong Wang; Ronald E. Verrall; Marianna Foldvari

Improving the efficiency of gene delivery by using non-viral vectors is currently an area of considerable research interest. Novel derivatives of gemini surfactants having aza- (12-5N-12, 12-7N-12, 12-8N-12) and imino- (12-7NH-12) substituted spacer groups and C12 tails have been designed to improve DNA transfection. Physicochemical characterization of micelle and interfacial properties of these cationic compounds are reported. The effect of these substitutions on the aggregation properties of the gemini surfactants is discussed in the context of results for the 12-s-12 and 12-EOx-12 gemini series, previously reported in the literature. Aza substitution results in a spacer of intermediate hydrophobicity to the above series, reflected by the magnitude of both the critical micelle concentrations and head group areas. Enthalpy and apparent molar volume of micellization data illustrate the differences in the aggregation properties that result from the bulkier and more hydrophobic aza-substituent in the spacer as compared to an ether oxygen (for the 12-EOx-12 series) containing spacer. The 12-7N-12 and 12-8N-12 compounds show aberrant features in the surface tension and enthalpy of dilution results that are not observed for the 12-5N-12 and 12-7NH-12 compounds. Premicelle association is considered to be a source of this behaviour.


Diabetologia | 2011

The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic beta cells

P. Huypens; Renjitha Pillai; Tatiana Sheinin; S. Schaefer; Mei Huang; Matthew L. Odegaard; Sarah M. Ronnebaum; Shawn D. Wettig; Jamie W. Joseph

Aims/hypothesisWe have previously described a strong correlation between pyruvate cycling and insulin secretion. We have also demonstrated a particularly important role for a pyruvate–isocitrate cycling pathway involving the mitochondrial citrate/isocitrate carrier (CIC) and cytosolic NADP-dependent isocitrate dehydrogenase. CIC requires cytosolic malate as a counter-substrate during citrate and isocitrate export. Thus, considering that the mitochondrial dicarboxylate carrier (DIC) provides an important source of cytosolic malate, we investigated the potential role of DIC in control of glucose-stimulated insulin secretion (GSIS).MethodsWe used pharmacological and small interfering RNA (siRNA) tools to assess the role of DIC in insulin release in clonal insulin-secreting 832/13 cells and isolated rat islets.ResultsButylmalonate, an inhibitor of malate transport, reduced cytosolic malate and citrate levels, and inhibited GSIS in a dose-dependent manner in 832/13 cells. Suppression of DIC expression resulted in inhibition of GSIS by 5% to 69%, the extent of inhibition of insulin secretion being proportional to the level of Dic (also known as Slc25a10) gene knockdown. The most effective siRNA duplex against Dic did not affect glucose utilisation, glucose oxidation or ATP/ADP ratio, but did suppress glucose-induced increments of the NADPH/NADP+ ratio. Confirmation of our results in primary cultures of isolated rat islets showed that butylmalonate and an adenovirus expressing an siRNA against Dic-inhibited GSIS.Conclusions/interpretationMalate transport by DIC may play an important role in GSIS, possibly by providing cytosolic malate as a counter-substrate for citrate and/or isocitrate export by CIC. These studies also suggest that malate transport by DIC is (1) a critical component of NADPH production mediated by pyruvate-cycling and (2) regulates GSIS.

Collaboration


Dive into the Shawn D. Wettig's collaboration.

Top Co-Authors

Avatar

Ronald E. Verrall

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ildiko Badea

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Lee

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tranum Kaur

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar

Ryan John Skinner

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Moewes

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge