Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shayne Boucher is active.

Publication


Featured researches published by Shayne Boucher.


Blood | 2008

PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages.

Felicia Soo Lee Ng; Shayne Boucher; Susie Koh; Konduru S. R. Sastry; Lucas G. Chase; Uma Lakshmipathy; Cleo Choong; Zheng Yang; Mohan C. Vemuri; Mahendra S. Rao; Vivek Tanavde

We compared the transcriptomes of marrow-derived mesenchymal stem cells (MSCs) with differentiated adipocytes, osteocytes, and chondrocytes derived from these MSCs. Using global gene-expression profiling arrays to detect RNA transcripts, we have identified markers that are specific for MSCs and their differentiated progeny. Further, we have also identified pathways that MSCs use to differentiate into adipogenic, chondrogenic, and osteogenic lineages. We identified activin-mediated transforming growth factor (TGF)-beta signaling, platelet-derived growth factor (PDGF) signaling and fibroblast growth factor (FGF) signaling as the key pathways involved in MSC differentiation. The differentiation of MSCs into these lineages is affected when these pathways are perturbed by inhibitors of cell surface receptor function. Since growth and differentiation are tightly linked processes, we also examined the importance of these 3 pathways in MSC growth. These 3 pathways were necessary and sufficient for MSC growth. Inhibiting any of these pathways slowed MSC growth, whereas a combination of TGF-beta, PDGF, and beta-FGF was sufficient to grow MSCs in a serum-free medium up to 5 passages. Thus, this study illustrates it is possible to predict signaling pathways active in cellular differentiation and growth using microarray data and experimentally verify these predictions.


Tissue Engineering Part C-methods | 2011

Toward a Clinical-Grade Expansion of Mesenchymal Stem Cells from Human Sources: A Microcarrier-Based Culture System Under Xeno-Free Conditions

Francisco dos Santos; Pedro Z. Andrade; Manuel Abecasis; Jeffrey M. Gimble; Lucas G. Chase; Andrew M. Campbell; Shayne Boucher; Mohan C. Vemuri; Cláudia Lobato da Silva; J. M. S. Cabral

The immunomodulatory properties of mesenchymal stem cells (MSCs) make them attractive therapeutic agents for a wide range of diseases. However, the highly demanding cell doses used in MSC clinical trials (up to millions of cells/kg patient) currently require labor intensive methods and incur high reagent costs. Moreover, the use of xenogenic (xeno) serum-containing media represents a risk of contamination and raises safety concerns. Bioreactor systems in combination with novel xeno-free medium formulations represent a viable alternative to reproducibly achieve a safe and reliable MSC doses relevant for cell therapy. The main goal of the present study was to develop a complete xeno-free microcarrier-based culture system for the efficient expansion of human MSC from two different sources, human bone marrow (BM), and adipose tissue. After 14 days of culture in spinner flasks, BM MSC reached a maximum cell density of (2.0±0.2)×10⁵ cells·mL⁻¹ (18±1-fold increase), whereas adipose tissue-derived stem cells expanded to (1.4±0.5)×10⁵ cells·mL⁻¹ (14±7-fold increase). After the expansion, MSC expressed the characteristic markers CD73, CD90, and CD105, whereas negative for CD80 and human leukocyte antigen (HLA)-DR. Expanded cells maintained the ability to differentiate robustly into osteoblast, adipocyte, and chondroblast lineages upon directed differentiation. These results demonstrated the feasibility of expanding human MSC in a scalable microcarrier-based stirred culture system under xeno-free conditions and represent an important step forward for the implementation of a Good Manufacturing Practices-compliant large-scale production system of MSC for cellular therapy.


Cytotherapy | 2009

Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro

Bettina Lindroos; Shayne Boucher; Lucas G. Chase; Hannu Kuokkanen; Heini Huhtala; Riina Haataja; Mohan C. Vemuri; Riitta Suuronen; Susanna Miettinen

BACKGROUND AIMS Human adipose stem cells (ASC) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. ASC have been shown to have therapeutic applicability in pre-clinical studies, but a standardized expansion method for clinical cell therapy has yet to be established. Isolated ASC are typically expanded in medium containing fetal bovine serum (FBS); however, sera and other culturing reagents of animal origin in clinical therapy pose numerous safety issues, including possible infections and severe immune reactions. METHODS To identify optimal conditions for ex vivo expansion of ASC, the effects of seven serum-free (SF) and xeno-free (XF) media were investigated with both FBS and allogeneic human serum (alloHS; as a control media). Surface marker expression, proliferation, morphology and differentiation analyzes were utilized for investigating the effects of media on ASC. RESULTS The proliferation and morphology analysis demonstrated significant differences between ASC cultured in SF/XF culture media compared with serum-containing culture media, with medium prototype StemPro MSC SFM XenoFree providing significantly higher proliferation rates than ASC cultured in media containing serum, while still maintaining the differentiation potential and surface marker expression profile characteristic of ASC. CONCLUSIONS Looking forward, fully defined XF media formulations will provide the means for the development and approval of safer clinical cell therapy treatments. However, to fully recognize the capacity of these XF culture media, further pre-clinical safety and efficacy studies must be performed.


Experimental Hematology | 2008

Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

Loyal A. Goff; Shayne Boucher; Christopher L. Ricupero; Sara Fenstermacher; Mavis R. Swerdel; Lucas G. Chase; Christopher C. Adams; Jonathan D. Chesnut; Uma Lakshmipathy; Ronald P. Hart

OBJECTIVE Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self-renewal and differentiation. We propose that specific intracellular signaling pathways modulate gene expression during differentiation by regulating microRNA expression. MATERIALS AND METHODS Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with platelet-derived growth factor (PDGF) signaling. RESULTS The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells, such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted toward specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signaling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signaling was experimentally confirmed by direct PDGF inhibition. CONCLUSION Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways.


Stem Cells Translational Medicine | 2012

Development and Characterization of a Clinically Compliant Xeno-Free Culture Medium in Good Manufacturing Practice for Human Multipotent Mesenchymal Stem Cells

Lucas G. Chase; Sufang Yang; Vladimir Zachar; Zheng Yang; Uma Lakshmipathy; Jolene Bradford; Shayne Boucher; Mohan C. Vemuri

Human multipotent mesenchymal stem cell (MSC) therapies are currently being tested in clinical trials for Crohns disease, multiple sclerosis, graft‐versus‐host disease, type 1 diabetes, bone fractures, cartilage damage, and cardiac diseases. Despite remarkable progress in clinical trials, most applications still use traditional culture media containing fetal bovine serum or serum‐free media that contain serum albumin, insulin, and transferrin. The ill‐defined and variable nature of traditional culture media remains a challenge and has created a need for better defined xeno‐free culture media to meet the regulatory and long‐term safety requirements for cell‐based therapies. We developed and tested a serum‐free and xeno‐free culture medium (SFM‐XF) using human bone marrow‐ and adipose‐derived MSCs by investigating primary cell isolation, multiple passage expansion, mesoderm differentiation, cellular phenotype, and gene expression analysis, which are critical for complying with translation to cell therapy. Human MSCs expanded in SFM‐XF showed continual propagation, with an expected phenotype and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages similar to that of MSCs expanded in traditional serum‐containing culture medium (SCM). To monitor global gene expression, the transcriptomes of bone marrow‐derived MSCs expanded in SFM‐XF and SCM were compared, revealing relatively similar expression profiles. In addition, the SFM‐XF supported the isolation and propagation of human MSCs from primary human marrow aspirates, ensuring that these methods and reagents are compatible for translation to therapy. The SFM‐XF culture system allows better expansion and multipotentiality of MSCs and serves as a preferred alternative to serum‐containing media for the production of large scale, functionally competent MSCs for future clinical applications.


Biotechnology and Bioengineering | 2014

A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells

Francisco dos Santos; Andrew Campbell; Ana Fernandes-Platzgummer; Pedro Z. Andrade; Jeffrey M. Gimble; Yuan Wen; Shayne Boucher; Mohan C. Vemuri; Cláudia Lobato da Silva; J. M. S. Cabral

The large cell doses (>1 × 106 cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex‐vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost‐effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)‐free microcarrier‐based culture system was successfully established for bone marrow (BM) MSC and adipose tissue‐derived stem/stromal cell (ASC) cultivation using a 1L‐scale controlled stirred‐tank bioreactor, allowing the production of (1.1 ± 0.1) × 108 and (4.5 ± 0.2) × 107 cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat. Also, the three different feeding regimes studied—(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed‐batch addition of concentrated nutrients and growth factors every 2 days—yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA‐DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier‐based stirred culture system under xeno‐free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP‐compliant clinical‐scale MSC production system. Biotechnol. Bioeng. 2014;111: 1116–1127.


Stem Cell Research & Therapy | 2013

Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells.

Mimmi Patrikoski; Miia Juntunen; Shayne Boucher; Andrew Campbell; Mohan C. Vemuri; Bettina Mannerström; Susanna Miettinen

IntroductionAdipose tissue is an attractive and abundant source of multipotent stem cells. Human adipose stem cells (ASCs) have shown to have therapeutic relevancy in diverse clinical applications. Nevertheless, expansion of ASCs is often necessary before performing clinical studies. Standard in vitro cell-culture techniques use animal-derived reagents that should be avoided in clinical use because of safety issues. Therefore, xeno- and serum-free (XF/SF) reagents are highly desirable for enhancing the safety and quality of the transplanted ASCs.MethodsIn the current study, animal component-free isolation and cell-expansion protocols were developed for ASCs. StemPro MSC SFM XF medium with either CELLstart™ CTS™ coating or Coating Matrix Kit were tested for their ability to support XF/SF growth. Basic stem-cell characteristics such as immunophenotype (CD3, CD11a, CD14, CD19, CD34, CD45RO, CD54, CD73, CD80, CD86, CD90, CD105, HLA-DR), proliferation, and differentiation potential were assessed in XF/SF conditions and compared with human serum (HS) or traditionally used fetal bovine serum (FBS) cultures.ResultsASCs cultured in XF/SF conditions had significantly higher proliferation rates compared with HS/FBS cultures. Characteristic immunophenotypes of ASCs were maintained in every condition; however, cells expanded in XF/SF conditions showed significantly lower expression of CD54 (intercellular adhesion molecule 1, ICAM-1) at low passage number. Further, multilineage differentiation potential of ASCs was maintained in every culture condition.ConclusionsOur findings demonstrated that the novel XF/SF conditions maintained the basic stem cell features of ASCs and the animal-free workflow followed in this study has great potential in clinical cell therapies.


PLOS ONE | 2013

Identification of a Population of Epidermal Squamous Cell Carcinoma Cells with Enhanced Potential for Tumor Formation

Gautam Adhikary; Dan Grun; Candace L. Kerr; Sivaprakasam Balasubramanian; Ellen A. Rorke; Mohan C. Vemuri; Shayne Boucher; Jackie R. Bickenbach; Thomas J. Hornyak; Wen Xu; Matthew L. Fisher; Richard L. Eckert

Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.


Expert Reviews in Molecular Medicine | 2015

Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy

Simone Elkjær Riis; Vladimir Zachar; Shayne Boucher; Mohan C. Vemuri; Cristian Pablo Pennisi; Trine Fink

Since the discovery of adipose-derived stem cells (ASCs), there have been high expectations of their putative clinical use. Recent advances support these expectations, and it is expected that the transition from pre-clinical and clinical studies to implementation as a standard treatment modality is imminent. However ASCs must be isolated and expanded according to good manufacturing practice guidelines and a basic assurance of quality, safety, and medical effectiveness is needed for authorisation by regulatory agencies, such as European Medicines Agency and US Food and Drug Administration. In this review, a collection of studies investigating the influence of different steps of the isolation and expansion protocol on the yield and functionality of ASCs has been presented in an attempt to come up with best recommendations that ensure potential beneficial clinical outcome of using ASCs in any therapeutic setting. If the findings confirm the initial observations of beneficial effects of ASCs, the path is paved for implementing these ASC-based therapies as standard treatment options.


Biochimica et Biophysica Acta | 2013

Biochemistry of epidermal stem cells.

Richard L. Eckert; Gautam Adhikary; Sivaprakasam Balasubramanian; Ellen A. Rorke; Mohan C. Vemuri; Shayne Boucher; Jackie R. Bickenbach; Candace L. Kerr

BACKGROUND The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. SCOPE OF REVIEW A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. MAJOR CONCLUSIONS An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. GENERAL SIGNIFICANCE Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells.

Collaboration


Dive into the Shayne Boucher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Kuninger

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar

J. M. S. Cabral

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Yang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge