Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shehnaaz S.M. Manji is active.

Publication


Featured researches published by Shehnaaz S.M. Manji.


Biochemical Journal | 2001

Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins

Richard T. Williams; Shehnaaz S.M. Manji; Nigel J. Parker; M S Hancock; L Van Stekelenburg; J P Eid; Paul V. Senior; J S Kazenwadel; T Shandala; R Saint; Peter J. Smith; Marie Dziadek

STIM1 (where STIM is stromal interaction molecule) is a candidate tumour suppressor gene that maps to human chromosome 11p15.5, a region implicated in a variety of cancers, particularly embryonal rhabdomyosarcoma. STIM1 codes for a transmembrane phosphoprotein whose structure is unrelated to that of any other known proteins. The precise pathway by which STIM1 regulates cell growth is not known. In the present study we screened gene databases for STIM1-related sequences, and have identified and characterized cDNA sequences representing a single gene in humans and other vertebrates, which we have called STIM2. We identified a single STIM homologue in Drosophila melanogaster (D-Stim) and Caenorhabditis elegans, but no homologues in yeast. STIM1, STIM2 and D-Stim have a conserved genomic organization, indicating that the vertebrate family of two STIM genes most probably arose from a single ancestral gene. The three STIM proteins each contain a single SAM (sterile alpha-motif) domain and an unpaired EF hand within the highly conserved extracellular region, and have coiled-coil domains that are conserved in structure and position within the cytoplasmic region. However, the STIM proteins diverge significantly within the C-terminal half of the cytoplasmic domain. Differential levels of phosphorylation appear to account for two molecular mass isoforms (105 and 115 kDa) of STIM2. We demonstrate by mutation analysis and protein sequencing that human STIM2 initiates translation exclusively from a non-AUG start site in vivo. STIM2 is expressed ubiquitously in cell lines, and co-precipitates with STIM1 from cell lysates. This association into oligomers in vivo indicates a possible functional interaction between STIM1 and STIM2. The structural similarities between STIM1, STIM2 and D-STIM suggest conserved biological functions.


Biochimica et Biophysica Acta | 2000

STIM1: a novel phosphoprotein located at the cell surface

Shehnaaz S.M. Manji; Nigel J. Parker; Richard T. Williams; Leonie van Stekelenburg; Richard B. Pearson; Marie Dziadek; Peter J. Smith

STIM1 is a novel candidate growth suppressor gene mapping to the human chromosome region 11p15.5 that is associated with several malignancies. STIM1 overexpression studies in G401 rhabdoid tumour, rhabdomyosarcoma and rodent myoblast cell lines causes growth arrest, consistent with a potential role as a tumour growth suppressor. We used highly specific antibodies to show by immunofluorescence and cell surface biotinylation studies that STIM1 is located at the cell surface of K562 cells. Western blot analysis revealed that the 90-kDa STIM1 protein is ubiquitously expressed in various human primary cells and tumour cell lines. STIM1 is not secreted from cells and does not appear to undergo proteolytic processing. We show evidence of post-translational modification of STIM1, namely phosphorylation and N-linked glycosylation. Phosphorylation of STIM1 in vivo occurs predominantly on serine residues. Thus, STIM1, the putative tumour growth suppressor gene is ubiquitously expressed and has features of a regulatory cell-surface phosphoprotein.


PLOS ONE | 2011

A Mutation in Synaptojanin 2 Causes Progressive Hearing Loss in the ENU-Mutagenised Mouse Strain Mozart

Shehnaaz S.M. Manji; Louise L Williams; Kerry A. Miller; Lisa M Ooms; Melanie Bahlo; Christina A. Mitchell; Hans-Henrik M. Dahl

Background Hearing impairment is the most common sensory impairment in humans, affecting 1∶1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. Methodology/Principal Findings The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2 N538K mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2 N538K/N538K) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. Conclusions/Significance Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.


American Journal of Pathology | 2011

An ENU-Induced Mutation of Cdh23 Causes Congenital Hearing Loss, but No Vestibular Dysfunction, in Mice

Shehnaaz S.M. Manji; Kerry A. Miller; Louise H. Williams; Lotte Andreasen; Maria Siboe; Elizabeth Rose; Melanie Bahlo; Michael J. Kuiper; Hans-Henrik M. Dahl

Mutations in the human cadherin 23 (CDH23) gene cause deafness, neurosensory, autosomal recessive 12 (DFNB12) nonsyndromic hearing loss or Usher syndrome, type 1D (characterized by hearing impairment, vestibular dysfunction, and visual impairment). Reported waltzer mouse strains each harbor a Cdh23-null mutation and present with hearing loss and vestibular dysfunction. Two additional Cdh23 mouse mutants, salsa and erlong, each carry a homozygous Cdh23 missense mutation and have progressive hearing loss. We report the identification of a novel mouse strain, jera, with inherited hearing loss caused by an N-ethyl-N-nitrosourea-induced c.7079T>A mutation in the Cdh23 gene. The mutation generates a missense change, p.V2360E, in Cdh23. Affected mice have profound sensorineural deafness, with no vestibular dysfunction. The p.V2360E mutation is semidominant because heterozygous mice have milder and more progressive hearing loss in advanced age. The mutation affects a highly conserved Ca(2+)-binding motif in extracellular domain 22, thought to be important for Cdh23 structure and dimerization. Molecular modeling suggests that the Cdh23(V2360E/V2360E) mutation alters the structural conformation of the protein and affects Ca(2+)-binding properties. Similar to salsa mice, but in contrast to waltzer mice, hair bundle development is normal in jera and hearing loss appears to be due to the loss of tip links. Thus, jera is a novel mouse model for DFNB12.


Journal of Neuroscience Research | 2006

Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

Shehnaaz S.M. Manji; Brita S. Sørensen; Tuomas Klockars; Timothy Lam; Wendy M. Hutchison; Hans-Henrik M. Dahl

The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted noncoding RNA. Real‐time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining in the nuclei of type I spiral ganglion cells and in cerebellum near the dorsal vestibular region of the cochlea. In embryonic mouse head sections, Meg3/Gtl2 RNA expression was observed in the otocyst, brain, eye, cartilage, connective tissue, and muscle. Meg3/Gtl2 RNA expression increased in the developing otocyst and localized to the spiral ganglion, stria vascularis, Reissners membrane, and greater epithelial ridge (GER) in the cochlear duct. RT‐PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels of Meg3/Gtl2 expression in differentiated neural cells. We propose that Meg3/Gtl2 RNA functions as a noncoding regulatory RNA in the inner ear and that it plays a role in pattern specification and differentiation of cells during otocyst development, as well as in the maintenance of a number of terminally differentiated cochlear cell types.


Journal of Cellular Physiology | 1998

Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid

Shehnaaz S.M. Manji; Kong Wah Ng; T. J. Martin; Hong Zhou

This study examines the relative importance of transcriptional and posttranscriptional actions of retinoic acid (RA) in the regulation of osteopontin gene expression in a rat clonal preosteoblastic cell line, UMR 201. Nuclear run‐on analysis demonstrated constitutive expression of the osteopontin gene which was increased by threefold after 4 hr treatment with 1 μM RA, returning to a basal level by 24 hr. However, Northern blot analysis, performed concurrently, showed that RA progressively increased the steady‐state osteopontin mRNA level beginning 2 hr before any increase in gene transcription and peaking at 24 hr. There was no difference in osteopontin mRNA stability between control and RA‐treated cells after gene transcription was inhibited with 5,6‐dichloro‐1‐D‐ribofuranosyl‐benzimidazole (DRB). Total RNA was obtained from cellular subfractions (nuclear matrix, nonmatrix chromatin, nuclear membrane, and cytoplasm) and reverse transcription‐polymerase chain reaction (RT‐PCR) performed with primers complementary to exons 3 and 4 of the mouse osteopontin gene. Unspliced PCR product, comprising the two exons and the intervening intron, was present in the nuclear matrix fractions of control and RA‐treated cells. However, RA resulted in a time‐dependent accumulation of mature osteopontin mRNA in all cellular subfractions, suggesting that the proficiency of nuclear processing of primary mRNA transcripts was greatly enhanced by RA. This action depended on de novo protein synthesis. These results demonstrate that the posttranscriptional action of RA is not unique to the regulation of alkaline phosphatase gene expression. J. Cell. Physiol. 176:1–9, 1998.


Cell Death and Disease | 2012

Anti-apoptotic gene Bcl2 is required for stapes development and hearing.

Marina R. Carpinelli; Andrew K. Wise; Benedicta D. Arhatari; Phillipe Bouillet; Shehnaaz S.M. Manji; Michael G. Manning; Anne A. Cooray; Rachel A. Burt

In this paper we describe novel and specific roles for the apoptotic regulators Bcl2 and Bim in hearing and stapes development. Bcl2 is anti-apoptotic while Bim is pro-apoptotic. Characterization of the auditory systems of mice deficient for these molecules revealed that Bcl2−/− mice suffered severe hearing loss. This was conductive in nature and did not affect sensory cells of the inner ear, with cochlear hair cells and neurons present and functional. Bcl2−/− mice were found to have a malformed, often monocrural, porous stapes (the small stirrup-shaped bone of the middle ear), but a normally shaped malleus and incus. The deformed stapes was discontinuous with the incus and sometimes fused to the temporal bones. The defect was completely rescued in Bcl2−/−Bim−/− mice and partially rescued in Bcl2−/−Bim+/− mice, which displayed high-frequency hearing loss and thickening of the stapes anterior crus. The Bcl2−/− defect arose in utero before or during the cartilage stage of stapes development. These results implicate Bcl2 and Bim in regulating survival of second pharyngeal arch or neural crest cells that give rise to the stapes during embryonic development.


American Journal of Pathology | 2012

Identification of Three Novel Hearing Loss Mouse Strains with Mutations in the Tmc1 Gene

Shehnaaz S.M. Manji; Kerry A. Miller; Louise H. Williams; Hans-Henrik M. Dahl

We report the identification of three new mouse models, baringo, nice, and stitch, with recessively inherited sensorineural deafness due to novel mutations in the transmembrane channel-like gene 1 (Tmc1). These strains were generated by N-ethyl-N-nitrosourea mutagenesis. DNA sequence analysis revealed changes in c.545A>G, c.1345T>C, and c.1661G>T, causing p.Y182C, p.Y449H, and p.W554L amino acid substitutions in baringo, nice, and stitch mutants, respectively. The mutations affect amino acid residues that are evolutionarily conserved across species. Similar to the previously reported Beethoven Tmc1 mutant, both p.Y182C and p.W554L are located outside a predicted transmembrane domain, whereas the p.Y449H mutation resides in the predicted transmembrane domain 4. Homozygous stitch-mutant mice have severe hearing loss at the age of 4 weeks and are deaf by the age of 8 weeks, whereas both baringo and nice mutants are profoundly deaf at the age of 4 weeks. None of the strains displays signs of vestibular dysfunction. Scanning electron microscopy revealed degeneration of outer hair cells in the basal region of baringo, nice, and stitch mutants. Immunolocalization studies revealed expression of TMC1 protein in the hair cells, spiral ganglion neurons, supporting cells, and stria ligament in the inner ear. Reduced levels of TMC1 protein were observed in the spiral ligament of mutants when compared with wild-type animals. These three allelic mutants provide valuable models for studying nonsyndromic recessive sensorineural hearing loss (DFNB7/11) in humans.


PLOS ONE | 2012

Inner Ear Morphology Is Perturbed in Two Novel Mouse Models of Recessive Deafness

Kerry A. Miller; Louise H. Williams; Elizabeth Rose; Michael J. Kuiper; Hans-Henrik M. Dahl; Shehnaaz S.M. Manji

Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7aI487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7aF947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7aI487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7aF947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.


PLOS ONE | 2013

Eeyore: a novel mouse model of hereditary deafness.

Kerry A. Miller; Louise H. Williams; Hans-Henrik M. Dahl; Shehnaaz S.M. Manji

Animal models that recapitulate human disease are proving to be an invaluable tool in the identification of novel disease-associated genes. These models can improve our understanding of the complex genetic mechanisms involved in disease and provide a basis to guide therapeutic strategies to combat these conditions. We have identified a novel mouse model of non-syndromic sensorineural hearing loss with linkage to a region on chromosome 18. Eeyore mutant mice have early onset progressive hearing impairment and show abnormal structure of the sensory epithelium from as early as 4 weeks of age. Ultrastructural and histological analyses show irregular hair cell structure and degeneration of the sensory hair bundles in the cochlea. The identification of new genes involved in hearing is central to understanding the complex genetic pathways involved in the hearing process and the loci at which these pathways are interrupted in people with a genetic hearing loss. We therefore discuss possible candidate genes within the linkage region identified in eeyore that may underlie the deafness phenotype in these mice. Eeyore provides a new model of hereditary sensorineural deafness and will be an important tool in the search for novel deafness genes.

Collaboration


Dive into the Shehnaaz S.M. Manji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kerry A. Miller

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kong Wah Ng

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. Martin

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Rose

Royal Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge