Shengguo Xue
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengguo Xue.
Environmental Science and Pollution Research | 2016
Shengguo Xue; Feng Zhu; Xiangfeng Kong; Chuan Wu; Ling Huang; Nan Huang; William Hartley
Bauxite residue (Red mud) is produced in alumina plants by the Bayer process in which Al-containing minerals are dissolved in hot NaOH. The global residue inventory reached an estimated 3.5 billion tons in 2014, increasing by approximately 120 million tons per annum. The appropriate management of bauxite residue is becoming a global environmental concern following increased awareness of the need for environmental protection. Establishment of a vegetation cover is the most promising way forward for the management of bauxite residue, although its physical and chemical properties can limit plant growth due to high alkalinity and salinity, low hydraulic conductivity, trace element toxicity (Al and Fe), and deficiencies in organic matter and nutrition concentrations. This paper discusses the various revegetation and rehabilitation strategies. Studies of the rehabilitation of bauxite residues have mainly focused on two approaches, amelioration of the surface layer and screening of tolerant plants and soil microorganisms. Amendment with gypsum can reduce the high alkalinity and salinity, promote soil aggregation, and increase the hydraulic conductivity of bauxite residues. Organic matter can provide a source of plant nutrients, form stable complexes with metal cations, promote hydraulic conductivity, stabilize soil structure, and provide an energy source for soil organisms. Tolerant plants and microorganisms such as halophytes and alkaliphilic microbes show the greatest potential to ameliorate bauxite residues. However, during restoration or as a result of natural vegetation establishment, soil formation becomes a critical issue and an improved understanding of the various pedogenic processes are required, and future direction should focus on this area.
Science of The Total Environment | 2016
Feng Zhu; Jiaxin Liao; Shengguo Xue; William Hartley; Qi Zou; Hao Wu
Bauxite residue often has poor physical conditions which impede plant growth. Native plant encroachment on a bauxite residue disposal area in Central China reveals that natural regeneration may improve its physicochemical properties. Residue samples collected from three different disposal ages were assessed to evaluate residue micromorphology and three-dimensional (3D) aggregate microstructure under natural regeneration. The residue aggregates in different disposal ages were divided in two sections: macro-aggregate (2-1mm) and micro-aggregate (0.25-0.05mm). Residue aggregate micromorphology was determined by scanning electron microscope and energy dispersive X-ray spectroscopy, and the residue aggregate microstructure was determined by synchrotron-based X-ray micro-computed tomography (SR-μCT) and image analysis techniques. Natural regeneration may improve residue aggregate stability and form a stable aggregate structure. Calcium content increased whilst sodium content decreased significantly on the surface of residue aggregates. Under natural soil-forming processes bauxite residue porosity, specific surface area, average length of paths, and average tortuosity of paths all significantly increased. This demonstrated that natural regeneration may stimulate the formation of stable aggregate structure in residues. Further understanding should focus on particle interaction forces and agglomeration mechanisms with the addition of external ameliorations.
Environmental Pollution | 2016
Chuan Wu; Qi Zou; Shengguo Xue; Weisong Pan; Liu Huang; William Hartley; Jing-Yu Mo; Ming Hung Wong
Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28-35%, 15-35% and 32-57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL.
Environmental Research | 2017
Shengguo Xue; Lizheng Shi; Chuan Wu; Hui Wu; Yanyan Qin; Weisong Pan; William Hartley; Mengqian Cui
ABSTRACT A mining district in south China shows significant metal(loid) contamination in paddy fields. In the soils, average Pb, Cd and As concentrations were 460.1, 11.7 and 35.1 mg kg−1 respectively, which were higher than the environmental quality standard for agricultural soils in China (GB15618‐1995) and UK Clea Soil Guideline Value. The average contents of Pb, Cd and As in rice were 5.24, 1.1 and 0.7 mg kg−1 respectively, which were about 25, 4.5 or 2.5 times greater than the limit values of the maximum safe contaminant concentration standard in food of China (GB 2762‐2012), and about 25, 10 or 1 times greater than the limit values of FAO/WHO standard. The elevated contents of Pb, Cd and As detected in soils around the factories, indicated that their spatial distribution was influenced by anthropogenic activity, while greater concentrations of Cd in rice appeared in the northwest region of the factories, indicating that the spatial distribution of heavy metals was also affected by natural factors. As human exposure around mining districts is mainly through oral intake of food and dermal contact, the effects of these metals on the viability and MT protein of HepG2 and KERTr cells were investigated. The cell viability decreased with increasing metal concentrations. Co‐exposure to heavy metals (Pb+Cd) increased the metals (Pb or Cd)‐mediated MT protein induction in both human HepG2 and KERTr cells. Increased levels of MT protein will lead to greater risk of carcinogenic manifestations, and it is likely that chronic exposure to metals may increase the risk to human health. Nevertheless, when co‐exposure to two or more metals occur (such as As+Pb), they may have an antagonistic effect thus reducing the toxic effects of each other. Capsule: Metal contaminations in paddy soils and rice were influenced by anthropogenic activity; metal co‐exposure induced MT protein in human cells. Graphical abstract Figure. No Caption available. HighlightsPb, Cd and As in paddy soils and rice were higher than national and FAO standards.Pb, Cd and As spatial distribution was mainly influenced by anthropogenic activity.The HepG2 and KERTr cell viability decreased with increasing metal concentrations.Co‐exposure to heavy metals increased MT protein induction in HepG2 and KERTr cells.Co‐exposure to some metals (As+Pb) may have an antagonistic effect.
Journal of Environmental Sciences-china | 2014
Weisong Pan; Chuan Wu; Shengguo Xue; William Hartley
A pot experiment was conducted to investigate the effects of root oxidation on arsenic (As) dynamics in the rhizosphere and As sequestration on rice roots. There were significant differences (P < 0.05) in pH values between rhizosphere and non-rhizosphere soils, with pH 5.68-6.16 in the rhizosphere and 6.30-6.37 in non-rhizosphere soils as well as differences in redox potentials (P < 0.05). Percentage arsenite was lower (4%-16%) in rhizosphere soil solutions from rice genotypes with higher radial oxygen loss (ROL) compared with genotypes with lower ROL (P < 0.05). Arsenic concentrations in iron plaque and rice straw were significantly negatively correlated (R = -0.60, P < 0.05). Genotypes with higher ROL (TD71 and Yinjingruanzhan) had significantly (P < 0.001) lower total As in rice grains (1.35 and 0.96 mg/kg, respectively) compared with genotypes with lower ROL (IAPAR9, 1.68 mg/kg; Nanyangzhan 2.24 mg/kg) in the As treatment, as well as lower inorganic As (P < 0.05). The present study showed that genotypes with higher ROL could oxidize more arsenite in rhizosphere soils, and induce more Fe plaque formation, which subsequently sequestered more As. This reduced As uptake in aboveground plant tissues and also reduced inorganic As accumulation in rice grains. The study has contributed to further understanding the mechanisms whereby ROL influences As uptake and accumulation in rice.
Journal of Hazardous Materials | 2017
Xiangfeng Kong; Meng Li; Shengguo Xue; William Hartley; Chengrong Chen; Chuan Wu; Xiaofei Li; Yiwei Li
Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging.
Environmental Science and Pollution Research | 2016
Shengguo Xue; Xiangfeng Kong; Feng Zhu; William Hartley; Xiaofei Li; Yiwei Li
Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.
International Journal of Phytoremediation | 2016
Shengguo Xue; Feng Zhu; Chuan Wu; Jie Lei; William Hartley; Weisong Pan
ABSTRACT Chenopodium ambrosioides L. can tolerate high concentrations of manganese and has potential for its use in the revegetation of manganese mine tailings. Following a hydroponic investigation, transmission electron microscopy (TEM)-energy disperse spectroscopy (EDS) was used to study microstructure changes and the possible accumulation of Mn in leaf cells of C. ambrosioides in different Mn treatments (200, 1000, 10000 μmol·L−1). At 200 μmol·L−1, the ultrastructure of C. ambrosioides was clearly visible without any obvious damage. At 1000 μmol·L−1, the root, stem and leaf cells remained intact, and the organelles were clearly visible without any obvious damage. However, when the Mn concentration exceeded 1000 μmol·L−1 the number of mitochondria in root cells decreased and the chloroplasts in stem cells showed a decrease in grana lamellae and osmiophilic granules. Compared to controls, treatment with 1000 μmol·L−1 or 10000 μmol·L−1 Mn over 30 days, gave rise to black agglomerations in the cells. At 10000 μmol·L−1, Mn was observed to form acicular structures in leaf cells and intercellular spaces, which may be a form of tolerance and accumulation of Mn in C. ambrosioides. This study has furthered the understanding of Mn tolerance mechanisms in plants, and is potential for the revegetation of Mn-polluted soils.
Environmental Chemistry Letters | 2017
Qi Zou; Wenhui An; Chuan Wu; Wai Chin Li; Anqin Fu; Ruiyang Xiao; Huikang Chen; Shengguo Xue
Worldwide arsenic (As) contamination in soils induces pollution of surface and ground waters, reduces crop quality and yield, and threatens human health. Biochar-based material has been proposed as ameliorants for contaminated soils. Here soil incubations were conducted to investigate the effects of biochar, red mud and red mud-modified biochar on the pH, total organic carbon content, sodium bicarbonate (NaHCO3)-extractable As concentration and microbial community composition of As-contaminated soils. Results show red mud-modified biochar reduces the concentration of NaHCO3-extractable As by 27%, whereas this concentration increases by 23% using biochar alone and 6% using red mud alone. Similar trends are observed for HCl-extractable As. The red mud and red mud-modified biochar treatments increased the relative abundance of Proteobacteria and its affiliated genera, such as Kaistobacter, Rhodanobacter and Rhodoplanes.
Environmental Science and Pollution Research | 2016
Feng Zhu; Nan Huang; Shengguo Xue; William Hartley; Yiwei Li; Qi Zou
It is recognized that for successful establishment of a vegetation cover on bauxite residue disposal areas, soil formation and a greater understanding of the processes of soil development are crucial. The stability of microaggregates is a very important physical property that prevents erosion in bauxite residues. Samples were collected from a disposal area in Central China to determine not only the mechanism of aggregation but also clay dispersion. Colloidal stability was assessed by determining organic matter, carbonate, electrolyte, clay mineral, and iron-aluminum oxide forms, as these would contribute to their stability. Organic matter improved microaggregate stability by combining with clay particles and polyvalent cations to form macroaggregates. Polyvalent cations such as calcium had a positive effect on particle flocculation, while organic molecules were more effective at stabilizing microaggregates. Removal of salinity dispersed silt-size aggregates into clay-size aggregates and reduced microaggregate stability. Calcium improved particle aggregation, while sodium had the reverse effect. Quartz powder was added to the residues but did not show any cementing effect, while free and amorphous iron-aluminum oxides were effective binding agents for microaggregate formation. We propose that the presence of organic matter and polyvalent cations, together with incorporation of organic carbon and calcium minerals, may enhance the stability of this material and prove beneficial toward improving its physical condition.