Shengjuan Wei
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengjuan Wei.
Journal of Animal Science | 2013
M. S. Duarte; Pedro Veiga Rodrigues Paulino; A. K. Das; Shengjuan Wei; Nicola Vergara Lopes Serão; Xing Fu; S. M. Harris; M.V. Dodson; Min Du
Intramuscular fat and collagen content are major factors affecting beef quality, but mechanisms regulating intramuscular adipose and connective tissue deposition are far from clear. Japanese Wagyu cattle are well known for their extremely high marbling. The objective of this study was to evaluate intramuscular fat (IMF) and collagen deposition in the muscle of Wagyu compared with Angus cattle. Animals were managed under the same condition and slaughtered at an averaging 585 ± 12.1 kg of BW. Samples of sternomandibularis muscle were collected from Wagyu (n = 3) and Angus (n = 3) for molecular and histological investigations of adipogenesis and fibrogenesis. With exception of C/EBPβ (P = 0.2864), the expression of the adipogenic markers C/EBPα (P = 0.008), PPARγ (P = 0.028), and zip finger protein 423 (Zfp423; P = 0.047) in Wagyu were greater than in Angus muscle, which was consistent with greater IMF deposition in Wagyu (P < 0.05). In addition, more adipocytes and preadipocytes were detected intramuscularly in Wagyu cattle. Similarly, fibrogenesis was also enhanced in Wagyu, with a greater expression of fibroblast growth factor (FGF)-2 (P = 0.028), FGF receptor 1 (P = 0.030), transforming growth factor (TGF)-β (P = 0.028), collagen I (P = 0.012), and collagen III (P = 0.025). Similarly, Wagyu muscle had greater collagen content (P = 0.002) and decreased collagen solubility (P = 0.005). In addition, muscle fiber diameter was larger (P < 0.0001) in Wagyu than in Angus cattle. These results clearly show that both IMF and collagen contents are enhanced in Wagyu cattle and more adipogenic cells are detected in Wagyu muscle, indicating intramuscular adipogenesis is enhanced in Wagyu compared with Angus muscle.
Cellular and Molecular Life Sciences | 2013
Shengjuan Wei; Lifan Zhang; Xiang Zhou; Min Du; Zhihua Jiang; Gary J. Hausman; Werner G. Bergen; Zan Ls; Michael V. Dodson
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.
Cellular and Molecular Life Sciences | 2016
Shengjuan Wei; Min Du; Zhihua Jiang; Gary J. Hausman; Lifan Zhang; Michael V. Dodson
Long noncoding RNAs (lncRNAs) are an emerging class of regulators involved in a myriad of biological processes. Recent studies have revealed that many lncRNAs play pivotal roles in regulating adipocyte development. Due to the prevalence of obesity and the serious effects of adiposity on human health and society development, it is necessary to summarize functions and recent advances of lncRNAs in adipogenesis. In this review, we highlight functional lncRNAs contributed to the regulation of adipogenesis, discussing their potential use as therapeutic targets to combat human obesity.
Journal of Genomics | 2013
Shengjuan Wei; M. S. Duarte; Zan Ls; Min Du; Zhihua Jiang; Le Luo Guan; Jie Chen; Gary J. Hausman; Michael V. Dodson
There is a voluminous amount of scientific literature dealing with the involvement of adipocytes in molecular regulation of carcass composition, obesity, metabolic syndrome, or diabetes. To form adipocytes (process termed adipogenesis) nearly all scientific papers refer to the use of preadipocytes, adipofibroblasts, stromal vascular cells or adipogenic cell lines, and their differentiation to form lipid-assimilating cells containing storage triacylglyceride. However, mature adipocytes, themselves, possess ability to undergo dedifferentiation, form proliferative-competent progeny cells (the exact plasticity is unknown) and reinitiate formation of cells capable of lipid metabolism and storage. The progeny cells would make a viable (and alternative) cell system for the evaluation of cell ability to reestablish lipid assimilation, ability to differentially express genes (as compared to other adipogenic cells), and to form other types of cells (multi-lineage potential). Understanding the dedifferentiation process itself and/or dedifferentiated fat cells could contribute to our knowledge of normal growth processes, or to disease function. Indeed, the ability of progeny cells to form other cell types could turn-out to be important for processes of tissue reconstruction/engineering and may have implications in clinical, biochemical or molecular processes.
Adipocyte | 2013
Shengjuan Wei; Zan Ls; Gary J. Hausman; Theodore P. Rasmussen; Werner G. Bergen; Michael V. Dodson
Analyses of mature adipocytes have shown that they possess a reprogramming ability in vitro, which is associated with dedifferentiation. The subsequent dedifferentiated fat cells (DFAT cells) are multipotent and can differentiate into adipocytes and other cell types as well. Mature adipocytes can be easily obtained by biopsy, and the cloned progeny cells are homogeneous in vitro. Therefore, DFAT cells (a new type of stem cell) may provide an excellent source of cells for tissue regeneration, engineering and disease treatment. The dedifferentiation of mature adipocytes, the multipotent capacity of DFAT cells and comparisons and contrasts with mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPS) are discussed in this review.
Biochemical and Biophysical Research Communications | 2013
Shengjuan Wei; Werner G. Bergen; Gary J. Hausman; Zan Ls; Michael V. Dodson
Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.
Journal of Genomics | 2013
M.V. Dodson; Shengjuan Wei; M. S. Duarte; Min Du; Zhihua Jiang; Gary J. Hausman; Werner G. Bergen
Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas.
Genetics and Molecular Research | 2013
Shengjuan Wei; Zan Ls; Hongbao Wang; Cheng G; Min Du; Zhihua Jiang; Gary J. Hausman; Douglas C. McFarland; M.V. Dodson
Fatty acid binding protein 4 (FABP4) is an important adipocyte gene, with roles in fatty acid transport and fat deposition in animals as well as human metabolic syndrome. However, little is known about the functional regulation of FABP4 at the cellular level in bovine. We designed and selected an effective shRNA (small hairpin RNA) against bovine FABP4, constructed a corresponding adenovirus (AD-FABP4), and then detected its influence on mRNA expression of four differentiation-related genes (PPAR(y), CEBPA, CEBPB, and SREBF1) and three lipid metabolism-related genes (ADIPOQ, LEP and LEPR) of adipocytes. The FABP4 mRNA content, derived from bovine adipocytes, decreased by 41% (P < 0.01) after 24 h and 66% (P < 0.01) after 72 h of AD-FABP4 infection. However, lower mRNA content of FABP4 did not significantly alter levels of differentiation-related gene expression at 24 h following AD-FABP4 treatment of bovine-derived preadipocytes (P = 0.54, 0.78, 0.89, and 0.94, respectively). Meanwhile, knocking down (partially silencing) FABP4 significantly decreased ADIPOQ (P < 0.05) and LEP (P < 0.01) gene expression after 24 h of AD-FABP4 treatment, decreased ADIPOQ (P < 0.01) and LEP (P < 0.01) gene expression, but increased LEPR mRNA expression (P < 0.01) after a 72-h treatment of bovine preadipocytes. We conclude that FABP4 plays a role in fat deposition and metabolic syndrome by regulating lipid metabolism-related genes (such as ADIPOQ, LEP and LEPR), without affecting the ability of preadipocytes to differentiate into adipocytes.
Adipocyte | 2013
Shengjuan Wei; Min Du; Zhihua Jiang; M. S. Duarte; Melinda Fernyhough-Culver; Elke Albrecht; Katja Will; Zan Ls; Gary J. Hausman; Elham M Youssef Elabd; Werner G. Bergen; Urmila Basu; Michael V. Dodson
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism.
Experimental Biology and Medicine | 2013
Michael V. Dodson; Sihem Boudina; Elke Albrecht; Luke Bucci; Melinda Fernyhough Culver; Shengjuan Wei; Werner G. Bergen; Andreia Amaral; Naima Moustaid-Moussa; Sylvia P Poulos; Gary J. Hausman
As the obesity epidemic continues, more Americans are getting fatter, having more weight-related problems such as cardiovascular disease, and are experiencing new metabolic dysfunctions. For over 50 years, the adipose tissue (AT), commonly referred to as fat, has been of interest to academic and clinical scientists, public health officials and individuals interested in body composition and image including much of the average public, athletes, parents, etc. On one hand, efforts to alter body shape, weight and body fat percentage still include bizarre and scientifically unfounded methods. On the other hand, significant new scientific strides have been made in understanding the growth, function and regulation of anatomical and systemic AT. Markers of transition/conversion of precursor cells that mature to form lipid assimilating adipocytes have been identified. Molecular ‘master’ regulators such as peroxisome proliferator-activated receptor gamma and CCAAT-enhancer-binding proteins were uncovered and regulatory mechanisms behind variables of adiposity defined and refined. Interventions including pharmaceutical compounds, surgical, psychosocial interventions have also been tested. Has all of the preceding research helped alleviate the adverse physiologies of overweight and/or obese people? Does research to date point to new modalities that should be the focus of efforts to rid the world of obesity-related problems in the 21st century? This review provides a general overview of scientific efforts to date and a provocative view of the future for adiposity.