Shengqiu Feng
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shengqiu Feng.
Biochemical and Biophysical Research Communications | 2013
Haiyan Sun; Ying Li; Shengqiu Feng; Weihua Zou; Kai Guo; Chunfen Fan; Shengli Si; Liangcai Peng
4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2 was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.
Planta | 2013
Ao Li; Tao Xia; Wen Xu; Tingting Chen; Xianliang Li; Jian Fan; Ruyi Wang; Shengqiu Feng; Yanting Wang; Bingrui Wang; Liangcai Peng
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5–GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.
Bioresource Technology | 2014
Meng Li; Shengqiu Feng; Leiming Wu; Ying Li; Chunfen Fan; Rui Zhang; Weihua Zou; Yuanyuan Tu; Hai-Chun Jing; Shizhong Li; Liangcai Peng
Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.
PLOS ONE | 2014
Jun Jia; Bin Yu; Leiming Wu; Hongwu Wang; Zhiliang Wu; Ming Li; Pengyan Huang; Shengqiu Feng; Peng Chen; Yonglian Zheng; Liangcai Peng
Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.
Cytogenetic and Genome Research | 2006
Shengqiu Feng; Xiaodong Chen; T. Xia; L. Gan; H. Qiu; M.H. Dai; Lei Zhou; Yin Peng; Z.Q. Yang
Angiopoietin-like protein 3 and -4 (ANGPTL3 and -4) are two members of angiopoietin-like proteins (ANGPTLs), which have the signature structure of the angiopoietin family but cannot bind to the TIE2 receptor. It has been reported that they both affect lipid metabolism by inhibiting the activity of lipoprotein lipase (LPL). Here we report the cDNA cloning, chromosome mapping and expression analysis of ANGPTL3 and -4 in pigs. Sequence analysis shows that ANGPTL3 contains an open reading frame of 1,389 bp, which encodes 462 amino acids, and ANGPTL4 contains a coding region of 1,239 bp, which encodes 412 amino acids. Porcine ANGPTL3 deduced amino acid sequence shares 83% and 73.7% identity with human and mouse, respectively, and ANGPTL4 shares 79.4% and 77.7% amino acid identity with human and mouse, respectively. Porcine ANGPTL3 and -4 were mapped to the 6q31→q35 and 2q21→q24 region, respectively, by radiation hybrid mapping. Tissue distribution analysis indicated that porcine ANGPTL3 mRNA was exclusively expressed in liver, and porcine ANGPTL4 was ubiquitously expressed with the highest abundance in white adipose tissue. Furthermore, the mRNA level of ANGPTL3 and -4 in liver and the mRNA level of ANGPTL4 in white adipose tissue were significantly higher in genetically obese pigs than in their lean counterparts. This is the first report of molecular cloning and characterization of ANGPTL3 and -4 in pigs, which will be helpful for a better understanding of the role of ANGPTLs in lipid metabolism.
Bioresource Technology | 2015
Leiming Wu; Meng Li; Jiangfeng Huang; Hui Zhang; Weihua Zou; Shiwei Hu; Ying Li; Chunfen Fan; Rui Zhang; Hai-Chun Jing; Liangcai Peng; Shengqiu Feng
In this study, 123 sweet sorghum (Sorghum bicolor L.) accessions and 50 mutants were examined with diverse stalk soluble sugars, bagasse enzymatic saccharification and wall polymers, indicating the potential near infrared spectroscopy (NIRS) assay for those three important parameters. Using the calibration and validation sets and modified squares method, nine calibration optimal equations were generated with high determination coefficient on the calibration (R(2)) (0.81-0.99), cross-validation (R(2)cv) (0.77-0.98), and the ratio performance deviation (RPD) (2.07-7.45), which were at first time applied by single spectra for simultaneous assay of stalk soluble sugars, bagasse hydrolyzed sugars, and three major wall polymers in bioenergy sweet sorghum.
Plant Science | 2014
Xianliang Li; Tao Xia; Jiangfeng Huang; Kai Guo; Xu Liu; Tingting Chen; Wen Xu; Xuezhe Wang; Shengqiu Feng; Liangcai Peng
UDP-glucose sterol glucosyltransferase (SGT) are enzymes typically involved in the production of sterol glycosides (SG) in various organisms. However, the biological functions of SGTs in plants remain largely unknown. In the present study, we identified two full-length GhSGT genes in cotton and examined their distinct biochemical properties. Using UDP-[U-(14)C]-glucose and β-sitosterol or total crude membrane sterols as substrates, GhSGT1 and GhSGT2 recombinant proteins were detected with different enzymatic activities for SG production. The addition of Triton (X-100) strongly inhibited the activity of GhSGT1 but caused an eightfold increase in the activity of GhSGT2. The two GhSGTs showed distinct enzyme activities after the addition of NaCl, MgCl2, and ZnCl2, indicating that the two GhSGTs exhibited distinct biochemical properties under various conditions. Furthermore, after heat shock treatment, GhSGT1 showed rapidly enhanced gene expression in vivo and low enzyme activity in vitro, whereas GhSGT2 maintained extremely low gene expression levels and relatively high enzyme activity. Notably, the GhSGT2 gene was highly expressed in cotton fibers, and the biochemical properties of GhSGT2 were similar to those of GhCESA in favor for MgCl2 and non-reduction reaction condition. It suggested that GhSGT2 may have important functions in cellulose biosynthesis in cotton fibers, which must be tested in the transgenic plants in the future. Hence, the obtained data provided insights into the biological functions of two different GhSGTs in cotton and in other plants.
Comparative Biochemistry and Physiology B | 2008
Xiaofeng Li; Ting Lei; T. Xia; Xiaodong Chen; Shengqiu Feng; Huaping Chen; Zhilong Chen; Yin Peng; Z.Q. Yang
As one subgroup of aquaporin, aquaglyceroporin including AQP3, 7, 9, 10 facilitates glycerol transport as well as water transport. In this study, we cloned the full length coding sequences of porcine (Sus scrofa) AQP3, 7 and 9 and the genomic sequence of AQP3 including 6 exons and 5 introns. Additionally, as a first step toward understanding the regulatory mechanisms of AQP9 in pig, we cloned and analyzed the upstream genomic sequence of the ATG translation initiation codon and found two negative insulin response elements (TGTTTTC and TATTTTG.), glucocorticoid-responsive elements, several CCAAT enhancer binding protein (C/EBP) sites, hepatocyte nuclear factor (HNF) sites, and NF-kappaB sites in this region. Subsequently, semi-quantitative analysis showed that AQP3 selectively expressed in spleen, stomach, kidney and lung. AQP7 and AQP9 were ubiquitously detected in all tissues examined and highly expressed in adipose tissue and liver, respectively. Finally, both AQP3 and AQP7 were assigned to chromosome 10q while AQP9 was mapped to chromosome 1q. This is the first report of molecular characterization of aquaglyceroporin in pig, which provides basic observations useful for future assessing and characterizing the role of aquaglyceroporin.
Plant Biotechnology Journal | 2018
Chunfen Fan; Ying Li; Zhen Hu; Huizhen Hu; Guangya Wang; Ao Li; Youmei Wang; Yuanyuan Tu; Tao Xia; Liangcai Peng; Shengqiu Feng
Summary Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.
Plant Biotechnology Journal | 2018
Huizhen Hu; Ran Zhang; Shengqiu Feng; Youmei Wang; Yanting Wang; Chunfen Fan; Ying Li; Zengyu Liu; René Schneider; Tao Xia; Shi You Ding; Staffan Persson; Liangcai Peng
Summary Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plants biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6‐like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild‐type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6‐like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.