Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangcai Peng is active.

Publication


Featured researches published by Liangcai Peng.


Planta | 2000

Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production

Liangcai Peng; Charles H. Hocart; John W. Redmond; Richard E. Williamson

Abstract. Three non-allelic radial swelling mutants (rsw1, rsw2 and rsw3) of Arabidopsisthaliana L. Heynh. were shown to be specifically impaired in cellulose production. Fractionation methods that identify, characterise and quantify some of the major cell wall polysaccharides in small quantities of seedlings demonstrated that changes in the production of cellulose are much more pronounced than changes in the production of non-cellulosic polysaccharides. A crude cell wall pellet was sequentially extracted with chloroform methanol (to recover lipids), dimethyl sulphoxide (starch), ammonium oxalate (pectins) and alkali (hemicelluloses). Crystalline cellulose remained insoluble through subsequent treatments with an acetic/nitric acid mixture and with trifluoroacetic acid. Cetyltrimethylammonium bromide precipitation resolved neutral and acidic polymers in the fractions, and precipitation behaviour, monosaccharide composition and glycosidic linkage patterns identified the major polysaccharides. The deduced composition of the walls of wild-type seedlings and the structure and solubility properties of the major polymers were broadly typical of other dicots. The three temperature-sensitive, radial swelling mutants produced less cellulose in their roots than the wild type when grown at their restrictive temperature (31 °C). There were no significant differences at 21 °C where no radial swelling occurs. The limited changes seen in the monosaccharide compositions, glycosidic linkage patterns and quantities of non-cellulosic polysaccharides support the view that the RSW1, RSW2 and RSW3 genes are specifically involved in cellulose synthesis. Reduced deposition of cellulose was accompanied by increased accumulation of starch.


Biotechnology for Biofuels | 2012

Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus

Ning Xu; Wei Zhang; Shuangfeng Ren; Fei Liu; Chunqiao Zhao; Haofeng Liao; Zhengdan Xu; Jiangfeng Huang; Qing Li; Yuanyuan Tu; Bin Yu; Yanting Wang; Jianxiong Jiang; Jingping Qin; Liangcai Peng

BackgroundLignocellulose is the most abundant biomass on earth. However, biomass recalcitrance has become a major factor affecting biofuel production. Although cellulose crystallinity significantly influences biomass saccharification, little is known about the impact of three major wall polymers on cellulose crystallization. In this study, we selected six typical pairs of Miscanthus samples that presented different cell wall compositions, and then compared their cellulose crystallinity and biomass digestibility after various chemical pretreatments.ResultsA Miscanthus sample with a high hemicelluloses level was determined to have a relatively low cellulose crystallinity index (CrI) and enhanced biomass digestibility at similar rates after pretreatments of NaOH and H2SO4 with three concentrations. By contrast, a Miscanthus sample with a high cellulose or lignin level showed increased CrI and low biomass saccharification, particularly after H2SO4 pretreatment. Correlation analysis revealed that the cellulose CrI negatively affected biomass digestion. Increased hemicelluloses level by 25% or decreased cellulose and lignin contents by 31% and 37% were also found to result in increased hexose yields by 1.3-times to 2.2-times released from enzymatic hydrolysis after NaOH or H2SO4 pretreatments. The findings indicated that hemicelluloses were the dominant and positive factor, whereas cellulose and lignin had synergistic and negative effects on biomass digestibility.ConclusionsUsing six pairs of Miscanthus samples with different cell wall compositions, hemicelluloses were revealed to be the dominant factor that positively determined biomass digestibility after pretreatments with NaOH or H2SO4 by negatively affecting cellulose crystallinity. The results suggested potential approaches to the genetic modifications of bioenergy crops.


BMC Plant Biology | 2010

Expression profiling and integrative analysis of the CESA/CSL superfamily in rice

Lingqiang Wang; Kai Guo; Yu Li; Yuanyuan Tu; Huizhen Hu; Bingrui Wang; Xiaocan Cui; Liangcai Peng

BackgroundThe cellulose synthase and cellulose synthase-like gene superfamily (CESA/CSL) is proposed to encode enzymes for cellulose and non-cellulosic matrix polysaccharide synthesis in plants. Although the rice (Oryza sativa L.) genome has been sequenced for a few years, the global expression profiling patterns and functions of the OsCESA/CSL superfamily remain largely unknown.ResultsA total of 45 identified members of OsCESA/CSL were classified into two clusters based on phylogeny and motif constitution. Duplication events contributed largely to the expansion of this superfamily, with Cluster I and II mainly attributed to tandem and segmental duplication, respectively. With microarray data of 33 tissue samples covering the entire life cycle of rice, fairly high OsCESA gene expression and rather variable OsCSL expression were observed. While some members from each CSL family (A1, C9, D2, E1, F6 and H1) were expressed in all tissues examined, many of OsCSL genes were expressed in specific tissues (stamen and radicles). The expression pattern of OsCESA/CSL and OsBC1L which extensively co-expressed with OsCESA/CSL can be divided into three major groups with ten subgroups, each showing a distinct co-expression in tissues representing typically distinct cell wall constitutions. In particular, OsCESA1, -3 & -8 and OsCESA4, -7 & -9 were strongly co-expressed in tissues typical of primary and secondary cell walls, suggesting that they form as a cellulose synthase complex; these results are similar to the findings in Arabidopsis. OsCESA5/OsCESA6 is likely partially redundant with OsCESA3 for OsCESA complex organization in the specific tissues (plumule and radicle). Moreover, the phylogenetic comparison in rice, Arabidopsis and other species can provide clues for the prediction of orthologous gene expression patterns.ConclusionsThe study characterized the CESA/CSL of rice using an integrated approach comprised of phylogeny, transcriptional profiling and co-expression analyses. These investigations revealed very useful clues on the major roles of CESA/CSL, their potentially functional complement and their associations for appropriate cell wall synthesis in higher plants.


Bioresource Technology | 2013

Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus

Wei Zhang; Zili Yi; Jiangfeng Huang; Fengcheng Li; Bo Hao; Ming Li; Shufen Hong; Yezi Lv; Wei Sun; Arthur J. Ragauskas; Fan Hu; Junhua Peng; Liangcai Peng

In this study, total 80 typical Miscanthus accessions were examined with diverse lignocellulose features, including cellulose crystallinity (CrI), degree of polymerization (DP), and mole number (MN). Correlation analysis revealed that the crude cellulose CrI and MN, as well as crystalline cellulose DP, displayed significantly negative influence on biomass enzymatic digestibility under pretreatments with NaOH or H(2)SO(4) at three concentrations. By contrast, the comparative analysis of two Miscanthus samples with similar cellulose contents showed that crude cellulose DP and crystalline cellulose MN were positive factors on biomass saccharification, indicating cross effects among the cellulose levels and the three cellulose features. The results can provide insights into mechanism of the lignocellulose enzymatic digestion, and also suggest potential approaches for genetic engineering of bioenergy crops.


Bioresource Technology | 2013

Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus

Fengcheng Li; Shuangfeng Ren; Wei Zhang; Zhengdan Xu; Guosheng Xie; Yan Chen; Yuanyuan Tu; Qing Li; Shiguang Zhou; Yu Li; Fen Tu; Lin Liu; Yanting Wang; Jianxiong Jiang; Jingping Qin; Shizhong Li; Qiwei Li; Hai-Chun Jing; Fasong Zhou; Neal I. Gutterson; Liangcai Peng

Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H(2)SO(4) pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses.


Journal of Integrative Plant Biology | 2011

Genetic engineering of energy crops: a strategy for biofuel production in China.

Guosheng Xie; Liangcai Peng

Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world. In concerns with food security in China, starch or sugar-based bioethanol and edible-oil-derived biodiesel are harshly restricted for large scale production. However, conversion of lignocellulosic residues from food crops is a potential alternative. Because of its recalcitrance, current biomass process is unacceptably expensive, but genetic breeding of energy crops is a promising solution. To meet the need, energy crops are defined with a high yield for both food and biofuel purposes. In this review, main grasses (rice, wheat, maize, sorghum and miscanthus) are evaluated for high biomass production, the principles are discussed on modification of plant cell walls that lead to efficient biomass degradation and conversion, and the related biotechnologies are proposed in terms of energy crop selection.


Biotechnology for Biofuels | 2013

Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

Zhiliang Wu; Mingliang Zhang; Lingqiang Wang; Yuanyuan Tu; Jing Zhang; Guosheng Xie; Weihua Zou; Fengcheng Li; Kai Guo; Qing Li; Chunbao Gao; Liangcai Peng

BackgroundWheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility.ResultsBased on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains in the future.ConclusionsUsing nine typical pairs of wheat and rice samples having distinct cell wall compositions and wide biomass saccharification, Ara substitution degree and monolignin H proportion have been revealed to be the dominant factors positively determining biomass digestibility upon various chemical pretreatments. The results demonstrated the potential of genetic modification of plant cell walls for high biomass saccharification in bioenergy crops.


Bioresource Technology | 2012

A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus.

Jiangfeng Huang; Tao Xia; Ao Li; Bin Yu; Qing Li; Yuanyuan Tu; Wei Zhang; Zili Yi; Liangcai Peng

Near infrared spectroscopy (NIRS) has been broadly applied as a quick assay for biological component and property analysis. However, NIRS remains unavailable for in-depth analysis of biomass digestibility in plants. In this study, NIRS was used to determine biomass enzymatic digestibility using 199 Miscanthus samples, which represents a rich germplasm resource and provides for a stable calibration model. The intensive evaluation indicates that the calibration and validation sets are comparable. Using the modified partial least squares method, seven optimal equations were generated with high determination coefficient on calibration (R(2)) at 0.75-0.89, cross-validation (R(2)cv) at 0.69-0.87, and the ratio performance deviation (RPD) at 1.80-2.74, which provide multiple options for NIRS prediction of biomass digestibility under different pretreatments. As biomass digestibility is a crucial parameter for biofuel processing, NIRS is a powerful tool for the high-throughput screening of biomass samples in plants.


Bioresource Technology | 2015

Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.

Yu Huang; Xiaoyang Wei; Shiguang Zhou; Mingyong Liu; Yuanyuan Tu; Ao Li; Peng Chen; Yanting Wang; Xuewen Zhang; Hongzhong Tai; Liangcai Peng; Tao Xia

In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond.


Biotechnology Advances | 2016

Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.

Yanting Wang; Chunfen Fan; Huizhen Hu; Ying Li; Dan Sun; Youmei Wang; Liangcai Peng

Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.

Collaboration


Dive into the Liangcai Peng's collaboration.

Top Co-Authors

Avatar

Yanting Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuanyuan Tu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ying Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shengqiu Feng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tao Xia

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiangfeng Huang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lingqiang Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kai Guo

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guosheng Xie

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunfen Fan

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge