Chunfen Fan
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chunfen Fan.
Biotechnology Advances | 2016
Yanting Wang; Chunfen Fan; Huizhen Hu; Ying Li; Dan Sun; Youmei Wang; Liangcai Peng
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Bioresource Technology | 2015
Shengli Si; Yan Chen; Chunfen Fan; Huizhen Hu; Ying Li; Jiangfeng Huang; Haofeng Liao; Bo Hao; Qing Li; Liangcai Peng; Yuanyuan Tu
In this study, one- and two-step pretreatments with alkali and acid were performed in the three Miscanthus species that exhibit distinct hemicelluloses levels. As a result, one-step with 4% NaOH or two-step with 2% NaOH and 1% H2SO4 was examined to be optimal for high biomass saccharification, indicating that alkali was the main effecter of pretreatments. Notably, both one- and two-step pretreatments largely enhanced biomass digestibility distinctive in hemicelluloses-rich samples by effectively co-extracting hemicelluloses and lignin. However, correlation analysis further indicated that the effective lignin extraction, other than the hemicelluloses removals, predominately determined biomass saccharification under various alkali and acid pretreatments, leading to a significant alteration of cellulose crystallinity. Hence, this study has suggested the potential approaches in bioenergy crop breeding and biomass process technology.
Biochemical and Biophysical Research Communications | 2013
Haiyan Sun; Ying Li; Shengqiu Feng; Weihua Zou; Kai Guo; Chunfen Fan; Shengli Si; Liangcai Peng
4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2 was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.
Bioresource Technology | 2014
Meng Li; Shengqiu Feng; Leiming Wu; Ying Li; Chunfen Fan; Rui Zhang; Weihua Zou; Yuanyuan Tu; Hai-Chun Jing; Shizhong Li; Liangcai Peng
Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.
Bioresource Technology | 2015
Leiming Wu; Meng Li; Jiangfeng Huang; Hui Zhang; Weihua Zou; Shiwei Hu; Ying Li; Chunfen Fan; Rui Zhang; Hai-Chun Jing; Liangcai Peng; Shengqiu Feng
In this study, 123 sweet sorghum (Sorghum bicolor L.) accessions and 50 mutants were examined with diverse stalk soluble sugars, bagasse enzymatic saccharification and wall polymers, indicating the potential near infrared spectroscopy (NIRS) assay for those three important parameters. Using the calibration and validation sets and modified squares method, nine calibration optimal equations were generated with high determination coefficient on the calibration (R(2)) (0.81-0.99), cross-validation (R(2)cv) (0.77-0.98), and the ratio performance deviation (RPD) (2.07-7.45), which were at first time applied by single spectra for simultaneous assay of stalk soluble sugars, bagasse hydrolyzed sugars, and three major wall polymers in bioenergy sweet sorghum.
Plant Biotechnology Journal | 2018
Chunfen Fan; Ying Li; Zhen Hu; Huizhen Hu; Guangya Wang; Ao Li; Youmei Wang; Yuanyuan Tu; Tao Xia; Liangcai Peng; Shengqiu Feng
Summary Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.
PLOS ONE | 2016
Xukai Li; Haofeng Liao; Chunfen Fan; Huizhen Hu; Ying Li; Jing Li; Zili Yi; Xiwen Cai; Liangcai Peng; Yuanyuan Tu
Miscanthus is a leading bioenergy candidate for biofuels, and it thus becomes essential to characterize the desire natural Miscanthus germplasm accessions with high biomass saccharification. In this study, total 171 natural Miscanthus accessions were geographically mapped using public database. According to the equation [P(H/L| East) = P(H/L∩East)/P(East)], the probability (P) parameters were calculated on relationships between geographical distributions of Miscanthus accessions in the East of China, and related factors with high(H) or low(L) values including biomass saccahrification under 1% NaOH and 1% H2SO4 pretreatments, lignocellulose features and climate conditions. Based on the maximum P value, a golden cutting line was generated from 42°25’ N, 108°22’ E to 22°58’ N, 116°28’ E on the original locations of Miscanthus accessions with high P(H|East) values (0.800–0.813), indicating that more than 90% Miscanthus accessions were originally located in the East with high biomass saccharification. Furthermore, the averaged insolation showed high P (H|East) and P(East|H) values at 0.782 and 0.754, whereas other climate factors had low P(East|H) values, suggesting that the averaged insolation is unique factor on Miscanthus distributions for biomass saccharification. In terms of cell wall compositions and wall polymer features, both hemicelluloses level and cellulose crystallinity (CrI) of Miscanthus accessions exhibited relative high P values, suggesting that they should be the major factors accounting for geographic distributions of Miscanthus accessions with high biomass digestibility.
Plant Biotechnology Journal | 2018
Huizhen Hu; Ran Zhang; Shengqiu Feng; Youmei Wang; Yanting Wang; Chunfen Fan; Ying Li; Zengyu Liu; René Schneider; Tao Xia; Shi You Ding; Staffan Persson; Liangcai Peng
Summary Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plants biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6‐like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild‐type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6‐like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Ecology and Evolution | 2015
Haiyan Sun; Kai Guo; Shengqiu Feng; Weihua Zou; Ying Li; Chunfen Fan; Liangcai Peng
Lignin and flavonoids play a vital role in the adaption of plants to a terrestrial environment. 4-Coumarate: coenzyme A ligase (4CL) is a key enzyme of general phenylpropanoid metabolism which provides the precursors for both lignin and flavonoids biosynthesis. However, very little is known about how such essential enzymatic functions evolve and diversify. Here, we analyze 4CL sequence variation patterns in a phylogenetic framework to further identify the evolutionary forces that lead to functional divergence. The results reveal that lignin-biosynthetic 4CLs are under positive selection. The majority of the positively selected sites are located in the substrate-binding pocket and the catalytic center, indicating that nonsynonymous substitutions might contribute to the functional evolution of 4CLs for lignin biosynthesis. The evolution of 4CLs involved in flavonoid biosynthesis is constrained by purifying selection and maintains the ancestral role of the protein in response to biotic and abiotic factors. Overall, our results demonstrate that protein sequence evolution via positive selection is an important evolutionary force driving adaptive diversification in 4CL proteins in angiosperms. This diversification is associated with adaption to a terrestrial environment.
Journal of Experimental Botany | 2018
Huizhen Hu; Ran Zhang; Shuchao Dong; Ying Li; Chunfen Fan; Yanting Wang; Tao Xia; Peng Chen; Lingqiang Wang; Shengqiu Feng; Staffan Persson; Liangcai Peng
CSLD3 overexpression enhances root and hypocotyl growth by increasing cell elongation; CSLD3-mediated hypocotyl elongation is independent of ethylene signaling.