Shibabrata Basak
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shibabrata Basak.
Nature Communications | 2017
Chuang Yu; Swapna Ganapathy; Ernst R. H. van Eck; Heng Wang; Shibabrata Basak; Zhaolong Li; Marnix Wagemaker
Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode–electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode–electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte–electrode interface design for future all-solid-state batteries.The large impedance at the interface between electrode and electrolyte poses a challenge to the development of solid-state batteries. Here the authors utilize two-dimensional lithium-ion exchange-NMR to monitor the spontaneous lithium-ion transport, providing insight into the interface design.
Journal of Materials Chemistry | 2016
Jicheng Feng; Xiaoai Guo; Nabil Ramlawi; Tobias V. Pfeiffer; Ruben Geutjens; Shibabrata Basak; Hermann Nirschl; G. Biskos; H.W. Zandbergen; A. Schmidt-Ott
High-yield and continuous synthesis of ultrapure inorganic nanoparticles (NPs) of well-defined size and composition has invariably been one of the major challenges in nanotechnology. Employing green techniques that avoid the use of poisonous and expensive chemicals has been realized as a necessity for manufacturing NPs on an industrial scale. In this communication, we show that a newly developed high-frequency spark (HFS) quenched by a high-purity gas yields a series of monometallic and bimetallic NPs in large quantities, with well-defined (primary) particle size (sub-10 nm) and chemical composition. The mass production rate is linearly dependent on the operating frequency, and can reach up to 1 g h−1, providing a universal and facile technology for producing multicomponent hybrid NPs. Considering also that the methodology requires neither any specialized machinery, nor any chemical reagents, product purification, or any further waste processing, it provides a green, sustainable and versatile platform for manufacturing key building blocks toward industrial scale production.
Journal of Physical Chemistry Letters | 2016
Swapna Ganapathy; J.R. Heringa; Maria S. Anastasaki; Brian D. Adams; Martijn van Hulzen; Shibabrata Basak; Zhaolong Li; Jonathan P. Wright; Linda F. Nazar; Niels H. van Dijk; Marnix Wagemaker
Intense interest in the Li-O2 battery system over the past 5 years has led to a much better understanding of the various chemical processes involved in the functioning of this battery system. However, detailed decomposition of the nanostructured Li2O2 product, held at least partially responsible for the limited reversibility and poor rate performance, is hard to measure operando under realistic electrochemical conditions. Here, we report operando nanobeam X-ray diffraction experiments that enable monitoring of the decomposition of individual Li2O2 grains in a working Li-O2 battery. Platelet-shaped crystallites with aspect ratios between 2.2 and 5.5 decompose preferentially via the more reactive (001) facets. The slow and concurrent decomposition of individual Li2O2 crystallites indicates that the Li2O2 decomposition rate limits the charge time of these Li-O2 batteries, highlighting the importance of using redox mediators in solution to charge Li-O2 batteries.
Journal of Materials Chemistry | 2017
Chuang Yu; Swapna Ganapathy; Ernst R. H. van Eck; Lambert van Eijck; Shibabrata Basak; Yanyan Liu; Long Zhang; H.W. Zandbergen; Marnix Wagemaker
Based on its high Li-ion conductivity, argyrodite Li6PS5Br is a promising solid electrolyte for all-solid-state batteries. However, more understanding is required on the relation between the solid electrolyte conductivity and the solid-state battery performance with the argyrodite structure, crystallinity and particle size that depend on the synthesis conditions. In the present study, this relationship is investigated using neutron and X-ray diffraction to determine the detailed structure and impedance as well as 7Li solid state NMR spectroscopy to study the Li-ion kinetics. It is found that depending on the synthesis conditions the distribution of the Br dopant over the crystallographic sites in Li6PS5Br is inhomogeneous, and that this may be responsible for a larger mobile Li-ion fraction at the interface regions in the annealed argyrodite materials. Comparing the bulk and interface properties of the differently prepared Li6PS5Br materials, it is proposed that optimal solid-state battery performance requires a different particle size for the solid electrolyte only region and the solid electrolyte in the cathode mixture. In the electrolyte region, the grain boundary resistance is minimized by annealing the argyrodite Li6PS5Br resulting in relatively large crystallites. In the cathode mixture however, additional particle size reduction of the Li6PS5Br is required to provide abundant Li6PS5Br-Li2S interfaces that reduce the resistance of this rate limiting step in Li-ion transport. Thereby the results give insight in how to improve solidstate battery performance by controlling the solid electrolyte structure.
Sustainable Energy and Fuels | 2017
Deepak P. Singh; N. Soin; S. Sharma; Shibabrata Basak; S. Sachdeva; S. S. Roy; H. W. Zanderbergen; J. A. McLaughlin; Mark Huijben; Marnix Wagemaker
3-D vertically aligned few-layered graphene (FLGs) nanoflakes synthesised using microwave plasma enhanced chemical vapour deposition are melt-impregnated with partially reduced graphene oxide-sulfur (PrGO-S) nanocomposites for use in lithium–sulfur batteries. The aligned structure and the presence of interconnected micro voids/channels in the 3-D FLG/PrGO-S electrodes serves as template not only for the high sulfur loading (up to 80 wt%, areal loading of 1.2 mg cm−2) but also compensates for the volume changes occurring during charge–discharge cycles. The inter-connectivity of the electrode system further facilitates fast electronic and ionic transport pathways. Consequently, the binder-free 3-D FLG/PrGO-S electrodes display a high first-cycle capacity (1320 mA h g−1 at C/20), along with excellent rate capability of ∼830 mA h g−1 and 700 mA h g−1 at 2C and 5C rates, respectively. The residual functional groups of PrGO (–OH, –C–O–C– and –COOH) facilitate fast and reversible capture of Li+ ions while confining the polysulfide shuttles, thus, contributing to excellent cycling capability and retention capacity. The 3D electrodes demonstrate excellent capacity retention of ∼80% (1040 mA h g−1 at C/10) over 350 charge–discharge cycles. Comparatively, the 2-D planar PrGO-S electrodes displayed poor electronic conductivity and can only provide 560 mA h g−1 after 150 cycles, thereby further highlighting the vital role of the electrode morphology in improving the electrochemical performance of Li–S batteries.
ACS Applied Materials & Interfaces | 2018
Jicheng Feng; Ruben Geutjens; Nguyen Van Thang; Junjie Li; Xiaoai Guo; Albert Kéri; Shibabrata Basak; Gábor Galbács; G. Biskos; Hermann Nirschl; H.W. Zandbergen; E. Brück; A. Schmidt-Ott
Using the magnetocaloric effect in nanoparticles holds great potential for efficient refrigeration and energy conversion. The most promising candidate materials for tailoring the Curie temperature to room temperature are rare-earth-based magnetic nanoalloys. However, only few high-nuclearity lanthanide/transition-metal nanoalloys have been produced so far. Here we report, for the first time, the observation of magnetic response in spark-produced LaFeSi nanoalloys. The results suggest that these nanoalloys can be used to exploit the magnetocaloric effect near room temperature; such a finding can lead to the creation of unique multicomponent materials for energy conversion, thus helping toward the realization of a sustainable energy economy.
ACS Applied Materials & Interfaces | 2018
Chuang Yu; Swapna Ganapathy; L. van Eijck; Ernst R. H. van Eck; Long Zhang; Shibabrata Basak; E.M. Kelder; Marnix Wagemaker
The high Li-ion conductivity of the argyrodite Li6PS5Cl makes it a promising solid electrolyte candidate for all-solid-state Li-ion batteries. For future application, it is essential to identify facile synthesis procedures and to relate the synthesis conditions to the solid electrolyte material performance. Here, a simple optimized synthesis route is investigated that avoids intensive ball milling by direct annealing of the mixed precursors at 550 °C for 10 h, resulting in argyrodite Li6PS5Cl with a high Li-ion conductivity of up to 4.96 × 10–3 S cm–1 at 26.2 °C. Both the temperature-dependent alternating current impedance conductivities and solid-state NMR spin–lattice relaxation rates demonstrate that the Li6PS5Cl prepared under these conditions results in a higher conductivity and Li-ion mobility compared to materials prepared by the traditional mechanical milling route. The origin of the improved conductivity appears to be a combination of the optimal local Cl structure and its homogeneous distribution in the material. All-solid-state cells consisting of an 80Li2S–20LiI cathode, the optimized Li6PS5Cl electrolyte, and an In anode showed a relatively good electrochemical performance with an initial discharge capacity of 662.6 mAh g–1 when a current density of 0.13 mA cm–2 was used, corresponding to a C-rate of approximately C/20. On direct comparison with a solid-state battery using a solid electrolyte prepared by the mechanical milling route, the battery made with the new material exhibits a higher initial discharge capacity and Coulombic efficiency at a higher current density with better cycling stability. Nevertheless, the cycling stability is limited by the electrolyte stability, which is a major concern for these types of solid-state batteries.
Frontiers in Energy Research | 2014
Swapna Ganapathy; Shibabrata Basak; Anton J. E. Lefering; Edith Rogers; H.W. Zandbergen; Marnix Wagemaker
Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we report a marked improvement in the capacity retention of amorphous TiO2 by the choice of preparation solvent, control of annealing temperature, and the presence of surface functional groups. Careful heating of the amorphous TiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From Fourier transform infra-red spectroscopy and electron energy loss spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface. The present research provides a facile strategy to improve the capacity retention of nano-structured electrode materials.
Advanced Energy Materials | 2016
Yaolin Xu; Ellie Swaans; Shibabrata Basak; H.W. Zandbergen; Dana M. Borsa; Fokko M. Mulder
Journal of Physical Chemistry C | 2016
Swapna Ganapathy; Zhaolong Li; Maria S. Anastasaki; Shibabrata Basak; Xue-Fei Miao; H.W. Zandbergen; Fokko M. Mulder; Marnix Wagemaker