Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiuying Cui is active.

Publication


Featured researches published by Xiuying Cui.


Cancer Cell | 2014

A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis

Shicheng Su; Qiang Liu; Jingqi Chen; Jianing Chen; Fei Chen; Chonghua He; Di Huang; Wei Wu; Ling Lin; Wei Huang; Jin Zhang; Xiuying Cui; Fang Zheng; Haiyan Li; Herui Yao; Fengxi Su; Erwei Song

The close vicinity of cancer cells undergoing epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) at the invasive front of tumors suggests that these two cell type may mutually interact. We show that mesenchymal-like breast cancer cells activate macrophages to a TAM-like phenotype by GM-CSF. Reciprocally, CCL18 from TAMs induces cancer cell EMT, forming a positive feedback loop, in coculture systems and humanized mice. Inhibition of GM-CSF or CCL18 breaks this loop and reduces cancer metastasis. High GM-CSF expression in breast cancer samples is associated with more CCL18(+) macrophages, cancer cell EMT, enhanced metastasis, and reduced patient survival. These findings suggest that a positive feedback loop between GM-CSF and CCL18 is important in breast cancer metastasis.


Journal of Biological Chemistry | 2012

MicroRNA 34c Gene Down-regulation via DNA Methylation Promotes Self-renewal and Epithelial-Mesenchymal Transition in Breast Tumor-initiating Cells

Fengyan Yu; Yu Jiao; Yinghua Zhu; Ying Wang; Jingde Zhu; Xiuying Cui; Yujie Liu; Yinghua He; Eun Young Park; Hongyu Zhang; Xiaobin Lv; Kelong Ma; Fengxi Su; Jong Hoon Park; Erwei Song

Background: The mechanisms for miRNA dysregulation in BT-ICs remain obscure. Results: Single hypermethylated CpG site in the promoter region of miR-34c gene repressed miR-34c expression by reducing DNA binding activities of Sp1 and promoted self-renewal and EMT of BT-ICs. Conclusion: Single hypermethylated CpG site in the promoter region contributes to the reduction of microRNA in BT-ICs. Significance: Methylation regulates the expression of microRNA in BT-ICs. Tumor-initiating cells (T-ICs), a subpopulation of cancer cells with stem cell-like properties, are related to tumor relapse and metastasis. Our previous studies identified a distinct profile of microRNA (miRNA) expression in breast T-ICs (BT-ICs), and the dysregulated miRNAs contribute to the self-renewal and tumorigenesis of these cells. However, the underlying mechanisms for miRNA dysregulation in BT-ICs remain obscure. In the present study, we demonstrated that the expression and function of miR-34c were reduced in the BT-ICs of MCF-7 and SK-3rd cells, a breast cancer cell line enriched for BT-ICs. Ectopic expression of miR-34c reduced the self-renewal of BT-ICs, inhibited epithelial-mesenchymal transition, and suppressed migration of the tumor cells via silencing target gene Notch4. Furthermore, we identified a single hypermethylated CpG site in the promoter region of miR-34c gene that contributed to transcriptional repression of miR-34c in BT-ICs by reducing DNA binding activities of Sp1. Therefore, miR-34c reduction in BT-ICs induced by a single hypermethylated CpG site in the promoter region promotes self-renewal and epithelial-mesenchymal transition of BT-ICs.


Nature Communications | 2015

miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program

Shicheng Su; Qiyi Zhao; Chonghua He; Di Huang; Jiang Liu; Fei Chen; Jianing Chen; Jian You Liao; Xiuying Cui; Yunjie Zeng; Herui Yao; Fengxi Su; Qiang Liu; Shanping Jiang; Erwei Song

Macrophages play a pivotal role in tissue fibrogenesis, which underlies the pathogenesis of many end-stage chronic inflammatory diseases. MicroRNAs are key regulators of immune cell functions, but their roles in macrophages fibrogenesis have not been characterized. Here we show that IL-4 and IL-13 induce miR-142-5p and downregulate miR-130a-3p in macrophages; these changes sustain the profibrogenic effect of macrophages. In vitro, miR-142-5p mimic prolongs STAT6 phosphorylation by targeting its negative regulator, SOCS1. Blocking miR-130a relieves its inhibition of PPARγ, which coordinates STAT6 signalling. In vivo, inhibiting miR-142-5p and increasing miR-130a-3p expression with locked nucleic acid-modified oligonucleotides inhibits CCL4-induced liver fibrosis and bleomycin-induced lung fibrosis in mice. Furthermore, macrophages from the tissue samples of patients with liver cirrhosis and idiopathic pulmonary fibrosis display increased miR-142-5p and decreased miR-130a-3p expression. Therefore, miR-142-5p and miR-130a-3p regulate macrophage profibrogenic gene expression in chronic inflammation.


Journal of Biological Chemistry | 2013

The Overexpression of Hypomethylated miR-663 Induces Chemotherapy Resistance in Human Breast Cancer Cells by Targeting Heparin Sulfate Proteoglycan 2 (HSPG2)

Haiyan Hu; Shuqin Li; Xiuying Cui; Xiaobin Lv; Yu Jiao; Fengyan Yu; Herui Yao; Erwei Song; Yongsong Chen; Minghui Wang; Ling Lin

Background: miR-663 is related to chemosensitivity in human breast cancer cells. Results: Overexpression of miR-663 was associated with chemoresistance and accompanied by down-regulation of HSPG2. Conclusion: Overexpression of hypomethylated miR-663 induces chemoresistance in breast cancer cells by down-regulating HSPG2. Significance: Learning how miR-663 regulates chemoresistance may provide a potential target for the miRNA-based approach of breast cancer therapy. MicroRNAs are involved in regulating the biology of cancer cells, but their involvement in chemoresistance is not fully understood. We found that miR-663 was up-regulated in our induced multidrug-resistant MDA-MB-231/ADM cell line and that this up-regulation was closely related to chemosensitivity. In the present study, we aimed to clarify the role of miR-663 in regulating the chemoresistance of breast cancer. MicroRNA microarray and quantitative RT-PCR assays were used to identify differentially expressed microRNAs. Cell apoptosis was evaluated by annexin V/propidium iodide staining, TUNEL, and reactive oxygen species generation analysis. The expression of miR-663 and HSPG2 in breast cancer tissues was detected by in situ hybridization and immunohistochemistry. The potential targets of miR-663 were defined by a luciferase reporter assay. Bisulfite sequencing PCR was used to analyze the methylation status. We found that miR-663 was significantly elevated in MDA-MB-231/ADM cells, and the down-regulation of miR-663 sensitized MDA-MB-231/ADM cells to both cyclophosphamide and docetaxel. The overexpression of miR-663 in breast tumor tissues was associated with chemoresistance; in MDA-MB-231 cells, this chemoresistance was accompanied by the down-regulation of HSPG2, which was identified as a target of miR-663. MDA-MB-231/ADM contained fewer methylated CpG sites than its parental cell line, and miR-663 expression in MDA-MB-231 cells was reactivated by 5-aza-29-deoxycytidine treatment, indicating that DNA methylation may play a functional role in the expression of miR-663. Our findings suggest that the overexpression of hypomethylated miR-663 induced chemoresistance in breast cancer cells by down-regulating HSPG2, thus providing a potential target for the development of an microRNA-based approach for breast cancer therapy.


Chinese Journal of Cancer | 2011

miR-124 suppresses multiple steps of breast cancer metastasis by targeting a cohort of pro-metastatic genes in vitro

Xiaobin Lv; Yu Jiao; Yanwei Qing; Haiyan Hu; Xiuying Cui; Tianxin Lin; Erwei Song; Fengyan Yu

Metastasis is a multistep process involving modification of morphology to suit migration, reduction of tumor cell adhesion to the extracellular matrix, increase of cell mobility, tumor cell resistance to anoikis, and other steps. MicroRNAs are well-suited to regulate tumor metastasis due to their capacity to repress numerous target genes in a coordinated manner, thereby enabling their intervention at multiple steps of the invasion-metastasis cascade. In this study, we identified a microRNA exemplifying these attributes, miR-124, whose expression was reduced in aggressive MDA-MB-231 and SK-3rd breast cancer cells. Downregulation of miR-124 expression in highly aggressive breast cancer cells contributed in part to DNA hypermethylation around the promoters of the three genes encoding miR-124. Ectopic expression of miR-124 in MDA-MB-231 cells suppressed metastasis-related traits including formation of spindle-like morphology, migratory capacity, adhesion to fibronectin, and anoikis. These findings indicate that miR-124 suppresses multiple steps of metastasis by diverse mechanisms in breast cancer cells and suggest a potential application of miR-124 in breast cancer treatment.


Oncogene | 2014

miR-27a regulates endothelial differentiation of breast cancer stem like cells

Wei Tang; Fengyan Yu; Herui Yao; Xiuying Cui; Y. Jiao; Ling Lin; Jingqi Chen; Dong Yin; Er Wei Song; Q. Liu

Recent studies suggested that cancer stem cells (CSCs) are capable of differentiating into endothelial cells and tumor endothelium may be derived from CSCs. But the mechanism remains unclear. We showed that vascular endothelial growth factor (VEGF) induced the expression of endothelial markers in breast cancer stem like cells (BCSLCs). In addition, the VEGF-treated BCSLCs formed capillary structure in matrigel and released vWF upon histamine treatment. The miR-27a expression was significantly increased in VEGF-treated BCSLCs. Antagonizing miR-27a by miR-27a anti-sense oligos (ASOs) in VEGF-treated BCSLCs led to decreased endothelial markers and function, while increasing miR-27a in BCSLCs resulted in enhanced endothelial properties. VEGF enhanced the transcription of miR-27a by increasing RUNX1 binding to miR-27a promoter. Increased miR-27a paralleled the reduced expression of ZBTB10, a known miR-27a target. Both expression of miR-27a and knockdown of ZBTB10 in BCSLCs promoted in vivo angiogenesis and tumor metastasis. Further, we demonstrated that VEGF-treated BCSLCs secreted more endogenous VEGF compared with undifferentiated BCSLCs. Thus, miR-27a promotes angiogenesis by mediating endothelial differentiation of BCSLCs and it may be a new target for anti-angiogenesis cancer therapy.


PLOS ONE | 2013

Lin28 Induces Epithelial-to-Mesenchymal Transition and Stemness via Downregulation of Let-7a in Breast Cancer Cells

Yujie Liu; Haiyan Li; Juan Feng; Xiuying Cui; Wei Huang; Yudong Li; Fengxi Su; Qiang Liu; Jiujun Zhu; Xiaobin Lv; Jianing Chen; Di Huang; Fengyan Yu

The RNA-binding protein Lin28 is known to promote malignancy by inhibiting the biogenesis of let-7, which functions as a tumor suppressor. However, the role of the Lin28/let-7 axis in the epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer has not been clearly expatiated. In our previous study, we demonstrated that let-7 regulates self-renewal and tumorigenicity of breast cancer stem cells. In the present study, we demonstrated that Lin28 was highly expressed in mesenchymal (M) type cells (MDA-MB-231 and SK-3rd), but it was barely detectable in epithelial (E) type cells (MCF-7 and BT-474). Lin28 remarkably induced the EMT, increased a higher mammosphere formation rate and ALDH activity and subsequently promoted colony formation, as well as adhesion and migration in breast cancer cells. Furthermore, we demonstrated that Lin28 induced EMT in breast cancer cells via downregulation of let-7a. Strikingly, Lin28 overexpression was found in breast cancers that had undergone metastasis and was strongly predictive of poor prognoses in breast cancers. Given that Lin28 induced the EMT via let-7a and promoted breast cancer metastasis, Lin28 may be a therapeutic target for the eradication of breast cancer metastasis.


Cancer Research | 2014

miR-21 Induces Myofibroblast Differentiation and Promotes the Malignant Progression of Breast Phyllodes Tumors

Chang Gong; Yan Nie; Shaohua Qu; Jian You Liao; Xiuying Cui; Herui Yao; Yunjie Zeng; Fengxi Su; Erwei Song; Qiang Liu

Phyllodes tumors of breast, even histologically diagnosed as benign, can recur locally and have metastatic potential. Histologic markers only have limited value in predicting the clinical behavior of phyllodes tumors. It remains unknown what drives the malignant progression of phyllodes tumors. We found that the expression of myofibroblast markers, α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and stromal cell-derived factor-1 (SDF-1), is progressively increased in the malignant progression of phyllodes tumors. Microarray showed that miR-21 was one of the most significantly upregulated microRNAs in malignant phyllodes tumors compared with benign phyllodes tumors. In addition, increased miR-21 expression was primarily localized to α-SMA-positive myofibroblasts. More importantly, α-SMA and miR-21 are independent predictors of recurrence and metastasis, with their predictive value of recurrence better than histologic grading. Furthermore, miR-21 mimics promoted, whereas miR-21 antisense oligos inhibited, the expression of α-SMA, FAP, and SDF-1, as well as the proliferation and invasion of primary stromal cells of phyllodes tumors. The ability of miR-21 to induce myofibroblast differentiation was mediated by its regulation on Smad7 and PTEN, which regulate the migration and proliferation, respectively. In breast phyllodes tumor xenografts, miR-21 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. This study suggests an important role of myofibroblast differentiation in the malignant progression of phyllodes tumors that is driven by increased miR-21.


Oncotarget | 2016

Long non-coding RNA NKILA inhibits migration and invasion of tongue squamous cell carcinoma cells via suppressing epithelial-mesenchymal transition

Wei Huang; Xiuying Cui; Jianing Chen; Yuhuan Feng; Erwei Song; Jin-song Li; Yujie Liu

Long non-coding RNAs (lncRNAs) have emerged recently as key regulators of tumor development and progression. Our previous study identified an NF-KappaB interacting lncRNA (NKILA) which was negatively correlated with breast cancer metastasis and patient prognosis. However, its clinical significance and potential role in Tongue squamous cell carcinoma (TSCC) remain unclear. Here we show that NKILA is down-regulated in TSCC cancer tissues than that in matched adjacent noncancerous tissues. And low NKILA expression in TSCC is significantly correlated with tumor metastasis and poor patient prognosis. In vitro, overexpression of NKILA decreases TSCC cells migration and invasion. Mechanistic study shows that NKILA inhibits the phosphorylation of IκBα and NF-κB activation as well as the induction of the epithelial-mesenchymal transition (EMT) process. Ectopic expression of NKILA in Tscca cells inhibits NF-κB activator TNF-α-promoted cell migration and invasion, while applying NF-κB inhibitor Bay-117082 or JSH-23 in NKILA silenced CAL27 cells reverses cell migration capacity to lower level. In vivo experimental metastasis model also demonstrates NKILA inhibits lung metastasis of NOD/SCID mice with TSCC tumors. These results suggested that NKILA is a vital determinant of TSCC migration and invasion and NF-κB signaling pathway mediates this effect. Given the above mentioned function of NKILA, it could act as a potential predictor for overall survival in patients with TSCC and a potential therapeutic target for TSCC intervention.


Cell Research | 2017

Blocking the recruitment of naive CD4 + T cells reverses immunosuppression in breast cancer

Shicheng Su; Jianyou Liao; Jiang Liu; Di Huang; Chonghua He; Fei Chen; Lin Bing Yang; Wei Wu; Jianing Chen; Ling Lin; Yunjie Zeng; Nengtai Ouyang; Xiuying Cui; Herui Yao; Fengxi Su; Jian-Dong Huang; Judy Lieberman; Qiang Liu; Erwei Song

The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.

Collaboration


Dive into the Xiuying Cui's collaboration.

Top Co-Authors

Avatar

Erwei Song

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Fengxi Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Di Huang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Herui Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shicheng Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Fei Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Qiang Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wei Wu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chonghua He

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge