Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigenobu Matsumura is active.

Publication


Featured researches published by Shigenobu Matsumura.


Endocrinology | 2009

Fibroblast Growth Factor 21 Regulates Lipolysis in White Adipose Tissue But Is Not Required for Ketogenesis and Triglyceride Clearance in Liver

Yuhei Hotta; Hirotoshi Nakamura; Morichika Konishi; Yusuke Murata; Hiroyuki Takagi; Shigenobu Matsumura; Kazuo Inoue; Tohru Fushiki; Nobuyuki Itoh

Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse functions. Fgf21, a unique member of the Fgf family, is expected to function as a metabolic regulator in an endocrine manner. Hepatic Fgf21 expression was increased by fasting. The phenotypes of hepatic Fgf21 transgenic or knockdown mice and high-fat, low-carbohydrate ketogenic diet-fed mice suggests that Fgf21 stimulates lipolysis in the white adipose tissue during normal feeding and is required for ketogenesis and triglyceride clearance in the liver during fasting. However, the physiological roles of Fgf21 remain unclear. To elucidate the physiological roles of Fgf21, we generated Fgf21 knockout (KO) mice by targeted disruption. Fgf21 KO mice were viable, fertile, and seemingly normal. Food intake, oxygen consumption, and energy expenditure were also essentially unchanged in Fgf21 KO mice. However, hypertrophy of adipocytes, decreased lipolysis in adipocytes, and decreased blood nonesterified fatty acid levels were observed when Fgf21 KO mice were fed normally. In contrast, increased lipolysis in adipocytes and increased blood nonesterified fatty acid levels were observed in Fgf21 KO mice by fasting for 24 h, indicating that Fgf21 stimulates lipolysis in the white adipose tissue during feeding but inhibits it during fasting. In contrast, unexpectedly, hepatic triglyceride levels were essentially unchanged in Fgf21 KO mice. In addition, ketogenesis in Fgf21 KO mice was not impaired by fasting for 24 h. The present results indicate that Fgf21 regulates lipolysis in adipocytes in response to the metabolic state but is not required for ketogenesis and triglyceride clearance in the liver.


Journal of Biological Chemistry | 2012

Perilipin 5, a Lipid Droplet-binding Protein, Protects Heart from Oxidative Burden by Sequestering Fatty Acid from Excessive Oxidation

Kenta Kuramoto; Tomo-o Okamura; Tomohiro Yamaguchi; Tomoe Y. Nakamura; Shigeo Wakabayashi; Hidetaka Morinaga; Masatoshi Nomura; Toshihiko Yanase; Kinya Otsu; Nobuteru Usuda; Shigenobu Matsumura; Kazuo Inoue; Tohru Fushiki; Yumiko Kojima; Takeshi Hashimoto; Fumie Sakai; Fumiko Hirose; Takashi Osumi

Background: Perilipin family proteins are important in determining the properties of lipid droplets (LDs). Results: Perilipin 5-deficient mice lack detectable LDs, exhibit enhanced fatty acid oxidation, and suffer increased ROS production in the heart. Conclusion: Perilipin 5 protects the heart from oxidative burden by sequestering fatty acid from excessive oxidation. Significance: These findings may help to increase understanding of the functions of non-adipose LDs. Lipid droplets (LDs) are ubiquitous organelles storing neutral lipids, including triacylglycerol (TAG) and cholesterol ester. The properties of LDs vary greatly among tissues, and LD-binding proteins, the perilipin family in particular, play critical roles in determining such diversity. Overaccumulation of TAG in LDs of non-adipose tissues may cause lipotoxicity, leading to diseases such as diabetes and cardiomyopathy. However, the physiological significance of non-adipose LDs in a normal state is poorly understood. To address this issue, we generated and characterized mice deficient in perilipin 5 (Plin5), a member of the perilipin family particularly abundant in the heart. The mutant mice lacked detectable LDs, containing significantly less TAG in the heart. Particulate structures containing another LD-binding protein, Plin2, but negative for lipid staining, remained in mutant mice hearts. LDs were recovered by perfusing the heart with an inhibitor of lipase. Cultured cardiomyocytes from Plin5-null mice more actively oxidized fatty acid than those of wild-type mice. Production of reactive oxygen species was increased in the mutant mice hearts, leading to a greater decline in heart function with age. This was, however, reduced by the administration of N-acetylcysteine, a precursor of an antioxidant, glutathione. Thus, we conclude that Plin5 is essential for maintaining LDs at detectable sizes in the heart, by antagonizing lipase(s). LDs in turn prevent excess reactive oxygen species production by sequestering fatty acid from oxidation and hence suppress oxidative burden to the heart.


Nature Communications | 2013

MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice

Takahiro Horie; Tomohiro Nishino; Osamu Baba; Yasuhide Kuwabara; Tetsushi Nakao; Masataka Nishiga; Shunsuke Usami; Masayasu Izuhara; Naoya Sowa; Naoya Yahagi; Hitoshi Shimano; Shigenobu Matsumura; Kazuo Inoue; Hiroyuki Marusawa; Tomoyuki Nakamura; Koji Hasegawa; Noriaki Kume; Masayuki Yokode; Toru Kita; Takeshi Kimura; Koh Ono

MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33−/−Srebf1+/− mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33−/− mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo.


Neuroscience Letters | 2009

Colocalization of GPR120 with phospholipase-Cβ2 and α-gustducin in the taste bud cells in mice

Shigenobu Matsumura; Ai Eguchi; Takafumi Mizushige; Nobuhide Kitabayashi; Satoshi Tsuzuki; Kazuo Inoue; Tohru Fushiki

A recent study has demonstrated that the G-protein coupled receptor GPR120 is expressed in the taste bud cells in rats. In this study, we have identified the types of taste cell that express GPR120 in C57/BL6 mice. Double immunostaining for GPR120 and the markers of type II taste cells (phospholipase-Cbeta2 and alpha-gustducin) revealed that the majority of the GPR120-positive taste cells are type II taste cells. In contrast, it was observed that GPR120 was rarely colocalized with the marker of type III cells (neuronal cell adhesion molecule). These results suggested that GPR120 is mainly expressed in the type II taste cells and might function as a sensor for dietary fat.


Bioscience, Biotechnology, and Biochemistry | 2009

Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice

Fuminori Kawabata; Naohiko Inoue; Yukiko Masamoto; Shigenobu Matsumura; Wakako Kimura; Makoto Kadowaki; Tomohiro Higashi; Makoto Tominaga; Kazuo Inoue; Tohru Fushiki

Capsinoids are non-pungent capsaicin analogs which increase energy expenditure like capsaicin. However, the mechanisms underlying the enhancement of their energy expenditure despite their non-pungency are poorly understood. We suggest here that capsinoids increase energy expenditure in wild-type mice, but not in transient receptor potential vanilloid 1 (TRPV1) knockout mice, implying that capsinoids increase energy expenditure via TRPV1. The jejunal administration of capsinoids to anesthetized mice raised the temperature of the colon and intrascapular brown adipose tissue. Denervation of the extrinsic nerves connected to the jejunum inhibited this temperature elevation. These findings suggest that capsinoids increase energy expenditure by activating the intestinal extrinsic nerves. Although the jejunal administration of capsinoids did not raise the tail skin temperature, an intravenous injection of capsinoids did, indicating that capsinoids could barely pass through the intestinal wall into the blood. Taken together, gastrointestinal TRPV1 may be a critical target for capsinoids to enhance energy expenditure.


Physiology & Behavior | 2007

The palatability of corn oil and linoleic acid to mice as measured by short-term two-bottle choice and licking tests

Takeshi Yoneda; Katsuyoshi Saitou; Takafumi Mizushige; Shigenobu Matsumura; Yasuko Manabe; Satoshi Tsuzuki; Kazuo Inoue; Tohru Fushiki

Free fatty acids (FFAs) were reported to be recognized in the oral cavity and possibly involved in fatty foods recognition. To understand the importance of oil recognition in the oral cavity, we investigated the effect of various concentrations of a fatty acid or corn oil on fluid intake as well as mices preferences in a two-bottle choice test and a licking test. Linoleic acid (LA), which is a main component of corn oil, was used as a representative FFA. In the two-bottle choice test between a pair of different concentrations of corn oil, the mice consistently adopted the higher concentration of corn oil. In the licking test for corn oil, the licking rates for the serial concentration of corn oils (0, 1, 5, 10 and 100%) were increased in a concentration-dependent manner. On the other hand, in the two-bottle test for a pair of different concentrations of LA (0, 0.125, 0.25 and 1%), 0.25% and 1% LA were preferred to mineral oil, but 0.25% and 1% LA were preferred equally in mice. In the licking test for LA, the mice showed the largest number of initial lickings for the 1% LA, while the licking rates for the high concentration of LA decreased. These results suggest that mice could discriminate the concentration of corn oil and LA in the oral cavity. We also suggest that pure corn oil is a highly preferable solution, while an optimal concentration of LA according to the preferences of mice is a low-range concentration (0.25-1%).


Physiology & Behavior | 2009

Contribution of gustation to the palatability of linoleic acid

Katsuyoshi Saitou; Takeshi Yoneda; Takafumi Mizushige; Hiroki Asano; Maya Okamura; Shigenobu Matsumura; Ai Eguchi; Yasuko Manabe; Satoshi Tsuzuki; Kazuo Inoue; Tohru Fushiki

We investigated the palatability of a low concentration of linoleic acid (LA) in short-term two-bottle choice tests and licking tests. To examine the contribution of gustation, mice were rendered anosmic with olfactory nerve transection surgery and test solutions were prepared using mineral oil (saturated long-chain hydrocarbon) to minimize textural effects. In the two-bottle choice tests between various pairs of different concentrations of corn oil and LA, both anosmic and the sham-operated mice constantly preferred a higher concentration of corn oil and LA. In the licking tests, the initial licking rate for 1% LA was higher than that for mineral oil in anosmic mice. In accordance with the results of the two-bottle choice test, the initial licking rate for corn oil and LA increased in a concentration-dependent manner in both anosmic and sham-operated mice in the licking test, and reached its peak at 100% corn oil and 1% LA. A preference comparison between 1% LA and 100% corn oil showed that anosmic mice preferred 1% LA over 100% corn oil. These results suggest that mice could recognize dietary fat and fatty acid solutions in the oral cavity without any olfactory or textural cues and the fatty acid recognition on their tongues might provide a pivotal cue to how dietary fat is recognized in the oral cavity.


Nature Communications | 2014

Critical roles of nardilysin in the maintenance of body temperature homoeostasis

Yoshinori Hiraoka; Tatsuhiko Matsuoka; Mikiko Ohno; Kazuhiro Nakamura; Sayaka Saijo; Shigenobu Matsumura; Kiyoto Nishi; Jiro Sakamoto; Po-Min Chen; Kazuo Inoue; Tohru Fushiki; Toru Kita; Takeshi Kimura; Eiichiro Nishi

Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Intragastric administration of allyl isothiocyanate increases carbohydrate oxidation via TRPV1 but not TRPA1 in mice

Noriyuki Mori; Fuminori Kawabata; Shigenobu Matsumura; Hiroshi Hosokawa; Shigeo Kobayashi; Kazuo Inoue; Tohru Fushiki

The transient receptor potential (TRP) channel family is composed of a wide variety of cation-permeable channels activated polymodally by various stimuli and is implicated in a variety of cellular functions. Recent investigations have revealed that activation of TRP channels is involved not only in nociception and thermosensation but also in thermoregulation and energy metabolism. We investigated the effect of intragastric administration of TRP channel agonists on changes in energy substrate utilization of mice. Intragastric administration of allyl isothiocyanate (AITC; a typical TRPA1 agonist) markedly increased carbohydrate oxidation but did not affect oxygen consumption. To examine whether TRP channels mediate this increase in carbohydrate oxidation, we used TRPA1 and TRPV1 knockout (KO) mice. Intragastric administration of AITC increased carbohydrate oxidation in TRPA1 KO mice but not in TRPV1 KO mice. Furthermore, AITC dose-dependently increased intracellular calcium ion concentration in cells expressing TRPV1. These findings suggest that AITC might activate TRPV1 and that AITC increased carbohydrate oxidation via TRPV1.


Life Sciences | 2009

Preference for dietary fat induced by release of beta-endorphin in rats

Takafumi Mizushige; Katsuyoshi Saitoh; Yasuko Manabe; Taichi Nishizuka; Yuichi Taka; Ai Eguchi; Takeshi Yoneda; Shigenobu Matsumura; Satoshi Tsuzuki; Kazuo Inoue; Tohru Fushiki

AIMS To determine whether beta-endorphin contributes to the ingestion of and preference for dietary oil, we examined the relationship between the dynamics of beta-endorphin, before and after the ingestion of corn oil, and the intake volume of corn oil. MAIN METHODS Rats were offered 5% corn oil for 20 min for 5 consecutive days so they could acquire a preference for corn oil. On day 6, seven groups of rats were presented with the oil for defined time periods, and we measured the beta-endorphin levels in the serum and cerebrospinal fluid (CSF) before and after the presentation of corn oil as well as the consumed volume of corn oil at defined time points. KEY FINDINGS Beta-endorphin levels in serum and CSF were significantly increased 15 min after the ingestion of corn oil, followed by a rapid decrease and maintenance at the basal level throughout the rest of the experimental period. The intake of corn oil was the lowest in the time period of 15-30 min, when the beta-endorphin level reached a peak value. The intake volume of corn oil might be inversely correlated with beta-endorphin levels in serum and CSF. The pretreatment of naloxone, an antagonist of the opioid receptor, decreased the initial licking rate for corn oil and increased the latency for corn oil in the licking test. SIGNIFICANCE The beta-endorphin was rapidly released after oil ingestion, which contributed to the hedonic preference and ingestive behavior for fat.

Collaboration


Dive into the Shigenobu Matsumura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuko Manabe

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Teppei Fujikawa

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Montminy

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge