Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shingo Arakawa is active.

Publication


Featured researches published by Shingo Arakawa.


Toxicologic Pathology | 2009

Sensitivity of Liver Injury in Heterozygous Sod2 Knockout Mice Treated with Troglitazone or Acetaminophen

Kazunori Fujimoto; Kazuyoshi Kumagai; Kazumi Ito; Shingo Arakawa; Yosuke Ando; Sen-ichi Oda; Takashi Yamoto; Sunao Manabe

Recently, it was reported that the intraperitoneal administration of 30 mg/kg/day troglitazone to heterozygous superoxide dismutase 2 gene knockout (Sod2+/−) mice for twenty-eight days caused liver injury, manifested by increased serum ALT activity and hepatic necrosis. Therefore, we evaluated the reproducibility of troglitazone-induced liver injury in Sod2+/− mice, as well as their validity as an animal model with higher sensitivity to mitochondrial toxicity by single-dose treatment with acetaminophen in Sod2+/− mice. Although we conducted a repeated dose toxicity study in Sod2+/− mice treated orally with 300 mg/kg/day troglitazone for twenty-eight days, no hepatocellular necrosis was observed in our study. On the other hand, six hours and twenty-four hours after an administration of 300 mg/kg acetaminophen, plasma ALT activity was significantly increased in Sod2+/− mice, compared to wild-type mice. In particular, six hours after administration, hepatic centrilobular necrosis was observed only in Sod2+/− mice. These results suggest that Sod2+/− mice are valuable as an animal model with higher sensitivity to mitochondrial toxicity. On the other hand, it was suggested that the mitochondrial damage alone might not be the major cause of the troglitazone-induced idiosyncratic liver injury observed in humans.


Clinical Cancer Research | 2016

DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1

Yusuke Ogitani; Tetsuo Aida; Katsunobu Hagihara; Junko Yamaguchi; Chiaki Ishii; Naoya Harada; Masako Soma; Hiromi Okamoto; Masataka Oitate; Shingo Arakawa; Takehiro Hirai; Ryo Atsumi; Takashi Nakada; Ichiro Hayakawa; Yuki Abe; Toshinori Agatsuma

Purpose: An anti-HER2 antibody–drug conjugate with a novel topoisomerase I inhibitor, DS-8201a, was generated as a new antitumor drug candidate, and its preclinical pharmacologic profile was assessed. Experimental Design: In vitro and in vivo pharmacologic activities of DS-8201a were evaluated and compared with T-DM1 in several HER2-positive cell lines and patient-derived xenograft (PDX) models. The mechanism of action for the efficacy was also evaluated. Pharmacokinetics in cynomolgus monkeys and the safety profiles in rats and cynomolgus monkeys were assessed. Results: DS-8201a exhibited a HER2 expression-dependent cell growth–inhibitory activity and induced tumor regression with a single dosing at more than 1 mg/kg in a HER2-positive gastric cancer NCI-N87 model. Binding activity to HER2 and ADCC activity of DS-8201a were comparable with unconjugated anti-HER2 antibody. DS-8201a also showed an inhibitory activity to Akt phosphorylation. DS-8201a induced phosphorylation of Chk1 and Histone H2A.X, the markers of DNA damage. Pharmacokinetics and safety profiles of DS-8201a were favorable and the highest non-severely toxic dose was 30 mg/kg in cynomolgus monkeys, supporting DS-8201a as being well tolerated in humans. DS-8201a was effective in a T-DM1–insensitive PDX model with high HER2 expression. DS-8201a, but not T-DM1, demonstrated antitumor efficacy against several breast cancer PDX models with low HER2 expression. Conclusions: DS-8201a exhibited a potent antitumor activity in a broad selection of HER2-positive models and favorable pharmacokinetics and safety profiles. The results demonstrate that DS-8201a will be a valuable therapy with a great potential to respond to T-DM1–insensitive HER2-positive cancers and low HER2–expressing cancers. Clin Cancer Res; 22(20); 5097–108. ©2016 AACR.


Journal of Biological Chemistry | 2006

Effects of restricted feeding on daily fluctuations of hepatic functions including p450 monooxygenase activities in rats.

Jun Hirao; Shingo Arakawa; Kyoko Watanabe; Kazumi Ito; Tadashi Furukawa

Hepatic P450 monooxygenase activities, assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities, show obvious daily fluctuations in male rats with high values during the dark period and low values during the light period. We have already confirmed that the ACD activities are controlled by the suprachiasmatic nucleus (SCN), which is well known as the oscillator of circadian rhythm. Recently, it is reported that circadian oscillators exist not only in the SCN but also in peripheral organs. To date, it is unclear which circadian oscillators predominantly drive the daily fluctuations of hepatic ACD activities. To address this question, we examined the effects of restricted feeding, which uncouples the circadian oscillators in the liver from the central pacemaker in the SCN, on the daily fluctuations in hepatic ACD activities in male rats. Here we show that restricted feeding inverts the oscillation phase of the daily fluctuations in hepatic ACD activities. Regarding the hepatic P450 content, there were no fluctuations between the light and dark periods under ad libitum and restricted feeding conditions. Therefore, it is considered that the daily fluctuations in hepatic ACD activities are predominantly driven by the circadian factors in peripheral organs rather than by the oscillator in the SCN directly.


Drug Metabolism and Disposition | 2006

Characterization of phenotypes in Gstm1-null mice by cytosolic and in vivo metabolic studies using 1,2-dichloro-4-nitrobenzene.

Kazunori Fujimoto; Shingo Arakawa; Yukari Shibaya; Hiroaki Miida; Yosuke Ando; Hiroaki Yasumo; Ayako Hara; Minoru Uchiyama; Haruo Iwabuchi; Wataru Takasaki; Sunao Manabe; Takashi Yamoto

Glutathione S-transferase Mu 1 (GSTM1) has been regarded as one of the key enzymes involved in phase II reactions in the liver, because of its high expression level. In this study, we generated mice with disrupted glutathione S-transferase Mu 1 gene (Gstm1-null mice) by gene targeting, and characterized the phenotypes by cytosolic and in vivo studies. The resulting Gstm1-null mice appeared to be normal and were fertile. Expression analyses for the Gstm1-null mice revealed a deletion of Gstm1 mRNA and a small decrease in glutathione S-transferase alpha 3 mRNA. In the enzymatic study, GST activities toward 1,2-dichloro-4-nitrobenzene (DCNB) and 1-chloro-2,4-dinitrobenzene (CDNB) in the liver and kidney cytosols were markedly lower in Gstm1-null mice than in the wild-type control. Gstm1-null mice had GST activities of only 6.1 to 21.0% of the wild-type control to DCNB and 26.0 to 78.6% of the wild-type control to CDNB. After a single oral administration of DCNB to Gstm1-null mice, the plasma concentration of DCNB showed larger AUC0–24 (5.1–5.3 times, versus the wild-type control) and higher Cmax (2.1–2.2 times, versus the wild-type control), with a correspondingly lower level of glutathione-related metabolite (AUC0–24, 9.4–17.9%; and Cmax, 9.7–15.6% of the wild-type control). In conclusion, Gstm1-null mice showed markedly low ability for glutathione conjugation to DCNB in the cytosol and in vivo and would be useful as a deficient model of GSTM1 for absorption, distribution, metabolism, and excretion/toxicology studies.


Drug Metabolism and Disposition | 2007

Generation and functional characterization of mice with a disrupted glutathione S-transferase, theta 1 gene.

Kazunori Fujimoto; Shingo Arakawa; Toshiyuki Watanabe; Hiroaki Yasumo; Yosuke Ando; Wataru Takasaki; Sunao Manabe; Takashi Yamoto; Sen-ichi Oda

Glutathione S-transferase (GST) theta 1 (GSTT1) has been regarded as one of the key enzymes involved in phase II reactions because of its unique substrate specificity. In this study, we generated mice with the disrupted Gstt1 gene (Gstt1-null mice) by gene targeting and analyzed the metabolic properties in cytosolic and in vivo studies. The resulting Gstt1-null mice failed to express the Gstt1 mRNA and GSTT1 protein by reverse transcriptase-polymerase chain reaction analysis and two-dimensional fluorescence difference gel electrophoresis/mass spectrometry analysis, respectively. However, the Gstt1-null mice appeared to be normal and were fertile. In an enzymatic study using cytosolic samples from the liver and kidney, GST activity toward 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), dichloromethane (DCM), and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) was markedly lower in Gstt1-null mice than in the wild-type controls, despite there being no difference in GST activity toward 1-choloro-2,4-dinitrobenzene between Gstt1-null mice and the wild-type controls. Gstt1-null mice had GST activity of only 8.7 to 42.1% of the wild-type controls to EPNP, less than 2.2% of the wild-type controls to DCM, and 13.2 to 23.9% of the wild-type controls to BCNU. Plasma BCNU concentrations after a single i.p. administration of BCNU to Gstt1-null mice were significantly higher, and there was a larger area under the curve5–60 min (male, 2.30 times; female, 2.28 times, versus the wild-type controls) based on the results. In conclusion, Gstt1-null mice would be useful as an animal model of humans with the GSTT1-null genotype.


Experimental and Toxicologic Pathology | 2014

Role of connexin 32 in acetaminophen toxicity in a knockout mice model

Isao Igarashi; Takanori Maejima; Kiyonori Kai; Shingo Arakawa; Munehiro Teranishi; Atsushi Sanbuissho

Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.


Drug Metabolism and Disposition | 2010

Methemoglobinemia Induced by 1,2-Dichloro-4-nitrobenzene in Mice with a Disrupted Glutathione S-Transferase Mu 1 Gene

Shingo Arakawa; Takanori Maejima; Naoki Kiyosawa; Takashi Yamaguchi; Yukari Shibaya; Yoshie Aida; Ryota Kawai; Kazunori Fujimoto; Sunao Manabe; Wataru Takasaki

A specific substrate to Mu class glutathione S-transferase (GST), 1,2-dichloro-4-nitrobenzene (DCNB), was administered to mice with a disrupted GST Mu 1 gene (Gstm1-null mice) to investigate the in vivo role of murine Gstm1 in toxicological responses to DCNB. A single oral administration of DCNB at doses of 500 and 1000 mg/kg demonstrated a marked increase in blood methemoglobin (MetHB) in Gstm1-null mice but not in wild-type mice. Therefore, Gstm1-null mice were considered to be more predisposed to methemoglobinemia induced by a single dosing of DCNB. In contrast, 14-day repeated-dose studies of DCNB at doses up to 600 mg/kg demonstrated a marked increase in blood MetHB in both wild-type and Gstm1-null mice. However, marked increases in the blood reticulocyte count, relative spleen weight, and extramedullary hematopoiesis in the spleen were observed in Gstm1-null mice compared with wild-type mice. In addition, microarray and quantitative reverse transcription-polymerase chain reaction analyses in the spleen showed exclusive up-regulation of hematopoiesis-related genes in Gstm1-null mice. These changes were considered to be adaptive responses to methemoglobinemia and attenuated the higher predisposition to methemoglobinemia observed in Gstm1-null mice in the single-dose study. In toxicokinetics monitoring, DCNB concentrations in plasma and blood cells were higher in Gstm1-null mice than those in wild-type mice, resulting from the Gstm1 disruption. In conclusion, it is suggested that the higher exposure to DCNB due to Gstm1 disruption was reflected in methemoglobinemia in the single-dose study and in adaptive responses in the 14-day repeated-dose study.


Journal of Toxicologic Pathology | 2013

Thioacetamide-induced Hepatocellular Necrosis Is Attenuated in Diet-induced Obese Mice

Makoto Shirai; Shingo Arakawa; Hiroaki Miida; Takuya Matsuyama; Junzo Kinoshita; Toshihiko Makino; Kiyonori Kai; Munehiro Teranishi

To assess modification of thioacetamide-induced hepatotoxicity in mice fed a high-fat diet, male C57BL/6J mice were fed a normal rodent diet or a high-fat diet for 8 weeks and then treated once intraperitoneally with thioacetamide at 50 mg/kg body weight. At 24 and 48 hours after administration, massive centrilobular hepatocellular necrosis was observed in mice fed the normal rodent diet, while the necrosis was less severe in mice fed the high-fat diet. In contrast, severe swelling of hepatocytes was observed in mice fed the high-fat diet. In addition, mice fed the high-fat diet displayed more than a 4-fold higher number of BrdU-positive hepatocytes compared with mice fed the normal rodent diet at 48 hours after thioacetamide treatment. To clarify the mechanisms by which the hepatic necrosis was attenuated, we investigated exposure to thioacetamide and one of its metabolites, the expression of CYP2E1, which converts thioacetamide to reactive metabolites, and the content of glutathione S-transferases in the liver. However, the reduced hepatocellular necrosis noted in mice fed the high-fat diet could not be explained by the differences in exposure to thioacetamide or thioacetamide sulfoxide or by differences in the expression of drug-metabolizing enzymes. On the other hand, at 8 hours after thioacetamide administration, hepatic total glutathione in mice fed the high-fat diet was significantly lower than that in mice fed the normal diet. Hence, decreased hepatic glutathione amount is a candidate for the mechanism of the attenuated necrosis. In conclusion, this study revealed that thioacetamide-induced hepatic necrosis was attenuated in mice fed the high-fat diet.


Drug Metabolism and Disposition | 2012

Evaluation of hepatic glutathione transferase Mu 1 and Theta 1 activities in humans and mice using genotype information.

Shingo Arakawa; Kazunori Fujimoto; Ayako Kato; Seiko Endo; Aiko Fukahori; Akira Shinagawa; Thomas Fischer; Juergen Mueller; Wataru Takasaki

We investigated the impact of glutathione transferases Mu 1 (GSTM1)- and glutathione transferase Theta 1 (GSTT1)-null genotypes on hepatic GST activities in humans and compared the results with those of Gstm1- and Gstt1-null mice. In liver with GSTM1/Gstm1-null genotype, GST activity toward p-nitrobenzyl chloride (NBC) was significantly decreased in both humans and mice. In addition, in liver with GSTT1/Gstt1-null genotype, GST activity toward dichloromethane (DCM) was significantly decreased in both humans and mice. Therefore, null genotypes of GSTM1/Gstm1 and GSTT1/Gstt1 are considered to decrease hepatic GST activities toward NBC and DCM, respectively, in both humans and mice. This observation shows the functional similarity between humans and mice for GSTM1 and GSTT1 toward some substrates. In the case of NBC and DCM, Gst-null mice would be relevant models for humans with GST-null genotype. In addition, decreases in GST activities toward 1,2-dichloro-4-nitrobenzene, trans-4-phenyl-3-buten-2-one, and 1-chloro-2,4,-dinitrobenzene were observed in Gstm1-null mice, and a decrease in GST activity toward 1,2-epoxy-3-(p-nitrophenoxy)propane was observed in Gstt1-null mice. However, an impact of GST-null genotypes on GST activities toward these substrates was not observed in humans. In the case of these mouse-specific substrates, Gst-null mice may be relevant models for humans regardless of GST genotype, because GST activities, which are higher in wild-type mice than in humans, were eliminated in Gst-null mice. This study shows that comparison of hepatic GST activities between humans and mice using genotype information would be valuable in using Gst-null mice as human models.


Journal of Toxicological Sciences | 2016

Decreased hepatic phosphorylated p38 mitogen-activated protein kinase contributes to attenuation of thioacetamide-induced hepatic necrosis in diet-induced obese mice.

Makoto Shirai; Shingo Arakawa; Munehiro Teranishi; Kiyonori Kai

We previously reported that thioacetamide (TA)-induced hepatocellular necrosis was attenuated in mice fed a high-fat diet (HFD mice) compared with mice fed a normal rodent diet (ND mice). In this study, we investigated whether p38 mitogen-activated protein kinase (p38 MAPK) was involved in this attenuation. Western blot analysis revealed that hepatic phosphorylated p38 MAPK protein decreased at 8 and 24 hours (hr) after TA dosing in the HFD mice, while it decreased only at 24 hr in the ND mice in comparison to the time- and diet-matched, vehicle-treated mice. p38 MAPK regulates various biological functions including inflammation, therefore, hepatic metabolomics analysis focusing on pro-inflammatory lipid mediators was performed. At 24 hr after TA dosing, only one pro-inflammatory mediator, 12-hydroxyeicosatetraenoic acid (HETE), was higher in the HFD mice. On the other hand, in addition to 12-HETE, 15-HETE and 12-hydroxyeicosapentaenoic acid (HEPE) were higher and omega-3/omega-6 polyunsaturated fatty acids ratios were lower in the ND mice at 24 hr. These results of metabolomics indicated that less pro-inflammatory state was seen in HFD mice than in ND mice at 24 hr. Finally, to confirm whether the observed decrease in phosphorylated p38 MAPK could attenuate TA-induced hepatocellular necrosis, we showed that SB203580 hydrochloride, an inhibitor of p38 MAPK, partially attenuated TA-induced hepatic necrosis in ND mice. Collectively, these results suggest that a prompt decrease in phosphorylation of p38 MAPK after TA administration is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice.

Collaboration


Dive into the Shingo Arakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge