Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shingo Kajimura is active.

Publication


Featured researches published by Shingo Kajimura.


Nature | 2012

A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis

Pontus Boström; Jun Wu; Mark P. Jedrychowski; Anisha Korde; Li Ye; James C. Lo; Kyle A. Rasbach; Elisabeth A. Boström; Jang Hyun Choi; Jonathan Z. Long; Shingo Kajimura; Maria Cristina Zingaretti; Birgitte F. Vind; Hua Tu; Saverio Cinti; Kurt Højlund; Steven P. Gygi; Bruce M. Spiegelman

Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α). Here we show in mouse that PGC1-α expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.


Nature | 2008

PRDM16 controls a brown fat/skeletal muscle switch

Patrick Seale; Bryan C. Bjork; Wenli Yang; Shingo Kajimura; Sherry Chin; Shihuan Kuang; Anthony Scimè; Srikripa Devarakonda; Heather M. Conroe; Hediye Erdjument-Bromage; Paul Tempst; Michael A. Rudnicki; David R. Beier; Bruce M. Spiegelman

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-γ (peroxisome-proliferator-activated receptor-γ) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.


Journal of Clinical Investigation | 2011

Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.

Patrick Seale; Heather M. Conroe; Jennifer L. Estall; Shingo Kajimura; Andrea Frontini; Jeff Ishibashi; Paul Cohen; Saverio Cinti; Bruce M. Spiegelman

The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by β-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.


Nature | 2010

Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5

Jang Hyun Choi; Alexander S. Banks; Jennifer L. Estall; Shingo Kajimura; Pontus Boström; Dina Laznik; Jorge L. Ruas; Michael J. Chalmers; Theodore M. Kamenecka; Matthias Blüher; Patrick R. Griffin; Bruce M. Spiegelman

Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARγ (peroxisome proliferator-activated receptor γ), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARγ does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARγ by Cdk5 is blocked by anti-diabetic PPARγ ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARγ phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARγ may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARγ.


Nature | 2009

Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex.

Shingo Kajimura; Patrick Seale; Kazuishi Kubota; Elaine P. Lunsford; John V. Frangioni; Steven P. Gygi; Bruce M. Spiegelman

Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-β (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-β is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16–C/EBP-β complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.


PLOS ONE | 2012

Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells

Louis Z. Sharp; Kosaku Shinoda; Haruya Ohno; David W. Scheel; Emi Tomoda; Lauren Ruiz; Houchun Hu; Larry Wang; Zdena Pavlova; Vicente Gilsanz; Shingo Kajimura

Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: “classical” brown adipocytes develop during the prenatal stage whereas “beige” or “brite” cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells’ inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.


Genes & Development | 2008

Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex

Shingo Kajimura; Patrick Seale; Takuya Tomaru; Hediye Erdjument-Bromage; Marcus P. Cooper; Jorge L. Ruas; Sherry Chin; Paul Tempst; Mitchell A. Lazar; Bruce M. Spiegelman

Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.


Cell Metabolism | 2010

Transcriptional Control of Brown Fat Development

Shingo Kajimura; Patrick Seale; Bruce M. Spiegelman

Deconvoluting the natural pathway of BAT development has defined key molecular events, which enables researchers to manipulate the amount or activity of brown fat. We review recent advances on the transcriptional regulation of BAT development and discuss the emerging questions.


Genes & Development | 2009

Transcriptional control of brown adipocyte development and physiological function—of mice and men

Patrick Seale; Shingo Kajimura; Bruce M. Spiegelman

The last several years have seen an explosion of information relating to the transcriptional control of brown fat cell development. At the same time, new data have emerged that clearly demonstrate that adult humans do indeed have substantial amounts of functioning brown adipose tissue (BAT). Together, these advances are stimulating a reassessment of the role of brown adipose tissue in human physiology and pathophysiology. These data have also opened up exciting new opportunities for the development of entirely novel classes of therapeutics for metabolic diseases like obesity and type 2 diabetes.


Cell Metabolism | 2015

Brown and beige fat: Physiological roles beyond heat-generation

Shingo Kajimura; Bruce M. Spiegelman; Patrick Seale

Since brown adipose tissue (BAT) dissipates energy through UCP1, BAT has garnered attention as a therapeutic intervention for obesity and metabolic diseases including type 2 diabetes. As we better understand the physiological roles of classical brown and beige adipocytes, it is becoming clear that BAT is not simply a heat-generating organ. Increased beige fat mass in response to a variety of external/internal cues is associated with significant improvements in glucose and lipid homeostasis that may not be entirely mediated by UCP1. We aim to discuss recent insights regarding the developmental lineages, molecular regulation, and new functions for brown and beige adipocytes.

Collaboration


Dive into the Shingo Kajimura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kosaku Shinoda

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Seale

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jang Hyun Choi

Ulsan National Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge