Shiven Kapur
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shiven Kapur.
Current Opinion in Chemical Biology | 2009
Chaitan Khosla; Shiven Kapur; David E. Cane
Modularity is a highly sought after feature in engineering design. A modular catalyst is a multi-component system whose parts can be predictably interchanged for functional flexibility and variety. Nearly two decades after the discovery of the first modular polyketide synthase (PKS), we critically assess PKS modularity in the face of a growing body of atomic structural and in vitro biochemical investigations. Both the architectural modularity and the functional modularity of this family of enzymatic assembly lines are reviewed, and the fundamental challenges that lie ahead for the rational exploitation of their full biosynthetic potential are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shiven Kapur; Brian Lowry; Satoshi Yuzawa; Sanketha Kenthirapalan; Alice Y. Chen; David E. Cane; Chaitan Khosla
Multimodular polyketide synthases (PKSs) have an assembly line architecture in which a set of protein domains, known as a module, participates in one round of polyketide chain elongation and associated chemical modifications, after which the growing chain is translocated to the next PKS module. The ability to rationally reprogram these assembly lines to enable efficient synthesis of new polyketide antibiotics has been a long-standing goal in natural products biosynthesis. We have identified a ratchet mechanism that can explain the observed unidirectional translocation of the growing polyketide chain along the 6-deoxyerythronolide B synthase. As a test of this model, module 3 of the 6-deoxyerythronolide B synthase has been reengineered to catalyze two successive rounds of chain elongation. Our results suggest that high selectivity has been evolutionarily programmed at three types of protein–protein interfaces that are present repetitively along naturally occurring PKS assembly lines.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Shiven Kapur; Alice Y. Chen; David E. Cane; Chaitan Khosla
Every polyketide synthase module has an acyl carrier protein (ACP) and a ketosynthase (KS) domain that collaborate to catalyze chain elongation. The same ACP then engages the KS domain of the next module to facilitate chain transfer. Understanding the mechanism for this orderly progress of the growing polyketide chain represents a fundamental challenge in assembly line enzymology. Using both experimental and computational approaches, the molecular basis for KS–ACP interactions in the 6-deoxyerythronolide B synthase has been decoded. Surprisingly, KS–ACP recognition is controlled at different interfaces during chain elongation versus chain transfer. In fact, chain elongation is controlled at a docking site remote from the catalytic center. Not only do our findings reveal a new principle in the modular control of polyketide antibiotic biosynthesis, they also provide a rationale for the mandatory homodimeric structure of polyketide synthases, in contrast to the monomeric nonribosomal peptide synthetases.
Protein Science | 2011
Louise K. Charkoudian; Corey W. Liu; Stefania Capone; Shiven Kapur; David E. Cane; Antonio Togni; Dieter Seebach; Chaitan Khosla
The assembly‐line architecture of polyketide synthases (PKSs) provides an opportunity to rationally reprogram polyketide biosynthetic pathways to produce novel antibiotics. A fundamental challenge toward this goal is to identify the factors that control the unidirectional channeling of reactive biosynthetic intermediates through these enzymatic assembly lines. Within the catalytic cycle of every PKS module, the acyl carrier protein (ACP) first collaborates with the ketosynthase (KS) domain of the paired subunit in its own homodimeric module so as to elongate the growing polyketide chain and then with the KS domain of the next module to translocate the newly elongated polyketide chain. Using NMR spectroscopy, we investigated the features of a structurally characterized ACP domain of the 6‐deoxyerythronolide B synthase that contribute to its association with its KS translocation partner. Not only were we able to visualize selective protein–protein interactions between the two partners, but also we detected a significant influence of the acyl chain substrate on this interaction. A novel reagent, CF3‐S‐ACP, was developed as a 19F NMR spectroscopic probe of protein–protein interactions. The implications of our findings for understanding intermodular chain translocation are discussed.
Current Opinion in Biotechnology | 2013
Mihalis Kariolis; Shiven Kapur; Jennifer R. Cochran
Protein-based biologics, which leverage the inherent affinity and specificity of protein-protein interactions, offer an effective strategy for targeting and modulating disease pathways. Despite the broad diversity of the proteome, monoclonal antibodies have been the major focus of such drug discovery efforts. While antibodies have shown great clinical value, the breadth and complexity of human disease highlight the need for alternatives that expand the therapeutic repertoire beyond this single class of proteins. The elucidation of molecular mechanisms underlying human disease has provided new opportunities for protein-based drugs to address challenging clinical problems. Natural ligands and receptors, which inherently modulate complex biological processes, have emerged as promising candidates for protein-based drug discovery efforts. Protein engineering strategies, guided by biological principles, are allowing ligands and receptors to be developed as next-generation therapeutics with improved safety and efficacy.
Bioorganic & Medicinal Chemistry Letters | 2008
Shiven Kapur; Andrew S. Worthington; Yinyan Tang; David E. Cane; Michael D. Burkart; Chaitan Khosla
The critical role of protein-protein interactions in the chemistry of polyketide synthases is well established. However, the transient and weak nature of these interactions, in particular those involving the acyl carrier protein (ACP), has hindered efforts to structurally characterize these interactions. We describe a chemo-enzymatic approach that crosslinks the active sites of ACP and their cognate ketosynthase (KS) domains, resulting in the formation of a stable covalent adduct. This process is driven by specific protein-protein interactions between KS and ACP domains. Suitable manipulation of the reaction conditions enabled complete crosslinking of a representative KS and ACP, allowing isolation of a stable, conformationally constrained adduct suitable for high-resolution structural analysis.
Biochemistry | 2012
Satoshi Yuzawa; Shiven Kapur; David E. Cane; Chaitan Khosla
The role of interdomain linkers in modular polyketide synthases is poorly understood. Analysis of the 6-deoxyerythronolide B synthase (DEBS) has yielded a model in which chain elongation is governed by interactions between the acyl carrier protein domain and the ketosynthase domain plus an adjacent linker. Alanine scanning mutagenesis of the conserved residues of this linker in DEBS module 3 led to the identification of the R513A mutant with a markedly reduced rate of chain elongation. Limited proteolysis supported a structural role for this Arg. Our findings highlight the importance of domain-linker interactions in assembly line polyketide biosynthesis.
Journal of Clinical Investigation | 2017
Mihalis Kariolis; Yu Rebecca Miao; Anh N. Diep; Shannon E. Nash; Monica M. Olcina; Dadi Jiang; Douglas S. Jones; Shiven Kapur; Irimpan I. Mathews; Albert C. Koong; Erinn B. Rankin; Jennifer R. Cochran; Amato J. Giaccia
The AXL receptor and its activating ligand, growth arrest–specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. However, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. Here, we have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression in aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Moreover, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers &ggr;H2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.
Nature | 2008
Shiven Kapur; Chaitan Khosla
Certain enzymes that synthesize antibiotics play a game of pass the parcel, handing biosynthetic intermediates from one active site to another. A study reveals the dynamic nature of interactions between the enzyme domains.
Bioengineering & Translational Medicine | 2017
Shiven Kapur; Adam P. Silverman; Anne Z. Ye; Niv Papo; Darren Jindal; Mark S. Blumenkranz; Jennifer R. Cochran
Abstract Pathologic angiogenesis is mediated by the coordinated action of the vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling axis, along with crosstalk contributed by other receptors, notably αvβ3 integrin. We build on earlier work demonstrating that point mutations can be introduced into the homodimeric VEGF ligand to convert it into an antagonist through disruption of binding to one copy of VEGFR2. This inhibitor has limited potency, however, due to loss of avidity effects from bivalent VEGFR2 binding. Here, we used yeast surface display to engineer a variant with VEGFR2 binding affinity approximately 40‐fold higher than the parental antagonist, and 14‐fold higher than the natural bivalent VEGF ligand. Increased VEGFR2 binding affinity correlated with the ability to more effectively inhibit VEGF‐mediated signaling, both in vitro and in vivo, as measured using VEGFR2 phosphorylation and Matrigel implantation assays. High affinity mutations found in this variant were then incorporated into a dual‐specific antagonist that we previously designed to simultaneously bind to and inhibit VEGFR2 and αvβ3 integrin. The resulting dual‐specific protein bound to human and murine endothelial cells with relative affinities of 120 ± 10 pM and 360 ± 50 pM, respectively, which is at least 30‐fold tighter than wild‐type VEGF (3.8 ± 0.5 nM). Finally, we demonstrated that this engineered high‐affinity dual‐specific protein could inhibit angiogenesis in a murine corneal neovascularization model. Taken together, these data indicate that protein engineering strategies can be combined to generate unique antiangiogenic candidates for further clinical development.