Shoaib Ahmad Malik
Institut Gustave Roussy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shoaib Ahmad Malik.
Cell Death and Disease | 2010
Eugenia Morselli; Maria Chiara Maiuri; Maria Markaki; Evgenia Megalou; Angela Pasparaki; Konstantinos Palikaras; Alfredo Criollo; Luca Galluzzi; Shoaib Ahmad Malik; Ilio Vitale; Mickaël Michaud; Frank Madeo; Nektarios Tavernarakis; Guido Kroemer
Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators.
Current Opinion in Cell Biology | 2010
Maria Chiara Maiuri; Lorenzo Galluzzi; Eugenia Morselli; Oliver Kepp; Shoaib Ahmad Malik; Guido Kroemer
Autophagy is an evolutionarily conserved catabolic pathway that is involved in numerous physiological processes and in multiple pathological conditions including cancer. Autophagy is regulated by an intricate network of signaling cascades that have not yet been entirely disentangled. Accumulating evidence indicates that p53, the best-characterized human tumor suppressor protein, can modulate autophagy in a dual fashion, depending on its subcellular localization. On the one hand, p53 functions as a nuclear transcription factor and transactivates proapoptotic, cell cycle-arresting and proautophagic genes. On the other hand, cytoplasmic p53 can operate at mitochondria to promote cell death and can repress autophagy via poorly characterized mechanisms. This review focuses on the recently discovered function of p53 as a master regulator of autophagy.
Journal of Cell Biology | 2011
Eugenia Morselli; Guillermo Mariño; Martin V. Bennetzen; Tobias Eisenberg; Evgenia Megalou; Sabrina Schroeder; Sandra Cabrera; Paule Bénit; Pierre Rustin; Alfredo Criollo; Oliver Kepp; Lorenzo Galluzzi; Shensi Shen; Shoaib Ahmad Malik; Maria Chiara Maiuri; Yoshiyuki Horio; Carlos López-Otín; Jens S. Andersen; Nektarios Tavernarakis; Frank Madeo; Guido Kroemer
The acetylase inhibitor spermidine and the sirtuin-1 activator resveratrol disrupt the antagonistic network of acetylases and deacetylases that regulate autophagy.
Cell Cycle | 2009
Maria Chiara Maiuri; Shoaib Ahmad Malik; Eugenia Morselli; Oliver Kepp; Alfredo Criollo; Pierre-Luc Mouchel; Rosa Carnuccio; Guido Kroemer
The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.
Molecular Cell | 2014
Guillermo Mariño; Federico Pietrocola; Tobias Eisenberg; Yongli Kong; Shoaib Ahmad Malik; Aleksandra Andryushkova; Sabrina Schroeder; Tobias Pendl; Alexandra Harger; Mireia Niso-Santano; Naoufal Zamzami; Marie Scoazec; Silvère Durand; David P. Enot; Álvaro F. Fernández; Isabelle Martins; Oliver Kepp; Laura Senovilla; Chantal Bauvy; Eugenia Morselli; Erika Vacchelli; Martin V. Bennetzen; Christoph Magnes; Frank Sinner; Thomas R. Pieber; Carlos López-Otín; Maria Chiara Maiuri; Patrice Codogno; Jens S. Andersen; Joseph A. Hill
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
Molecular Cell | 2012
Shensi Shen; Mireia Niso-Santano; Sandy Adjemian; Tetsuo Takehara; Shoaib Ahmad Malik; Hervé Minoux; Sylvie Souquere; Guillermo Mariño; Sylvie Lachkar; Laura Senovilla; Lorenzo Galluzzi; Oliver Kepp; Gérard Pierron; Maria Chiara Maiuri; Hayato Hikita; Romano T. Kroemer; Guido Kroemer
In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.
Autophagy | 2010
Eugenia Morselli; Maria Chiara Maiuri; Maria Markaki; Evgenia Megalou; Angela Pasparaki; Konstantinos Palikaras; Alfredo Criollo; Lorenzo Galluzzi; Shoaib Ahmad Malik; Ilio Vitale; Mickaël Michaud; Frank Madeo; Nektarios Tavernarakis; Guido Kroemer
The life span of various model organisms can be extended by caloric restriction as well as by autophagy-inducing pharmacological agents. Life span-prolonging effects have also been observed in yeast cells, nematodes and flies upon the overexpression of the deacetylase Sirtuin-1. Intrigued by these observations and by the established link between caloric restriction and Sirtuin-1 activation, we decided to investigate the putative implication of Sirtuin-1 in the response of human cancer cells and Caenorhabditis elegans to multiple triggers of autophagy. Our data indicate that the activation of Sirtuin-1 (by the pharmacological agent resveratrol and/or genetic means) per se ignites autophagy, and that Sirtuin-1 is required for the autophagic response to nutrient deprivation, in both human and nematode cells, but not for autophagy triggered by downstream signals such as the inhibition of mTOR or p53. Since the life span-extending effects of Sirtuin-1 activators are lost in autophagy-deficient C. elegans, our results suggest that caloric restriction and resveratrol extend longevity, at least in experimental settings, by activating autophagy.
Cell Cycle | 2012
Alfredo Criollo; Fanny Chereau; Shoaib Ahmad Malik; Mireia Niso-Santano; Guillermo Mariño; Lorenzo Galluzzi; Maria Chiara Maiuri; Véronique Baud; Guido Kroemer
It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.
The EMBO Journal | 2011
Alfredo Criollo; Mireia Niso-Santano; Shoaib Ahmad Malik; Mickaël Michaud; Eugenia Morselli; Guillermo Mariño; Sylvie Lachkar; Alexander V Arkhipenko; Francis Harper; Gérard Pierron; Jean-Christophe Rain; Jun Ninomiya-Tsuji; José M. Fuentes; Sergio Lavandero; Lorenzo Galluzzi; Maria Chiara Maiuri; Guido Kroemer
Autophagic responses are coupled to the activation of the inhibitor of NF‐κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ‐activated kinase 1 (TAK1)‐binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1‐IKK signalling axis, constitutively interact with each other via their coiled‐coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C‐terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy‐stimulatory ‘switch’ whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.
Cell Cycle | 2012
Federico Pietrocola; Guillermo Mariño; Delphine Lissa; Erika Vacchelli; Shoaib Ahmad Malik; Mireia Niso-Santano; Naoufal Zamzami; Lorenzo Galluzzi; Maria Chiara Maiuri; Guido Kroemer
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.