Yasushi Maki
Osaka Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yasushi Maki.
Genes to Cells | 2000
Yasushi Maki; Hideji Yoshida; Akira Wada
Ribosomes in Escherichia coli change their composition and conformation in the stationary phase. Ribosome modulation factor (RMF) and ribosomal protein S22 are known to be associated with stationary phase ribosomes. RMF association causes the loss of translational activity and the dimerization of 70S ribosomes into 100S ribosomes, which may increase cell survival in the stationary phase.
Science | 2008
Shou Furuike; Mohammad Delawar Hossain; Yasushi Maki; Kengo Adachi; Toshiharu Suzuki; Ayako Kohori; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F1–adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central γ subunit rotates inside a cylinder made of three α and three β subunits alternately arranged. The rotor shaft, an antiparallel α-helical coiled coil of the amino and carboxyl termini of the γ subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase.
FEBS Letters | 2000
Jun′ichi Urano; Tomofumi Nakagawa; Yasushi Maki; Takehiro Masumura; Kunisuke Tanaka; Norio Murata; Takashi Ushimaru
Plant dehydroascorbate reductase (DHAR), which re‐reduces oxidized ascorbate to maintain an appropriate level of ascorbate, is very important, but no gene or cDNA for plant DHAR has been cloned yet. Here, we describe a cDNA for a rice glutathione‐dependent DHAR (designated DHAR1). A recombinant Dhar1p produced in Escherichia coli was functional. The expression sequence tag database suggests that Dhar1p homologs exist in various plants. Furthermore, the rice Dhar1p has a low similarity to rat DHAR, although the rice enzyme has a considerably higher specific activity than the mammalian one. The mRNA level of DHAR1, the protein level of Dhar1p and the DHAR activity in rice seedlings were elevated by high temperature, suggesting the protection role of DHAR at high temperature.
Journal of Biological Chemistry | 2005
Akiko Hagiya; Takao Naganuma; Yasushi Maki; Jun Ohta; Yukiko Tohkairin; Tomomi Shimizu; Takaomi Nomura; Akira Hachimori; Toshio Uchiumi
Ribosomal P0, P1, and P2 proteins, together with the conserved domain of 28 S rRNA, constitute a major part of the GTPase-associated center in eukaryotic ribosomes. We investigated the mode of assembly in vitro by using various truncation mutants of silkworm P0. When compared with wild type (WT)-P0, the C-terminal truncation mutants CΔ65 and CΔ81 showed markedly reduced binding ability to P1 and P2, which was offset by the addition of an rRNA fragment covering the P0·P1-P2 binding site. The mutant CΔ107 lost the P1/P2 binding activity, whereas it retained the rRNA binding. In contrast, the N-terminal truncation mutants NΔ21-NΔ92 completely lost the rRNA binding, although they retained P1/P2 binding capability, implying an essential role of the N terminus of P0 for rRNA binding. The P0 mutants NΔ6, NΔ14, and CΔ18-CΔ81, together with P1/P2 and eL12, bound to the Escherichia coli core 50 S subunits deficient in L10·L7/L12 complex and L11. Analysis of incorporation of 32P-labeled P1/P2 into the 50 S subunits with WT-P0 and CΔ81 by sedimentation analysis indicated that WT-P0 bound two copies of P1 and P2, but CΔ81 bound only one copy each. The hybrid ribosome with CΔ81 that appears to contain one P1-P2 heterodimer retained lower but considerable activities dependent on eukaryotic elongation factors. These results suggested that two P1-P2 dimers bind to close but separate regions on the C-terminal half of P0. The results were further confirmed by binding experiments using chimeric P0 mutants in which the C-terminal 81 or 107 amino acids were replaced with the homologous sequences of the archaebacterial P0.
The EMBO Journal | 2006
Yoshimi Honma; Aiko Kitamura; Ryo Shioda; Hironori Maruyama; Kanako Ozaki; Yoko Oda; Thierry Mini; Paul Jenö; Yasushi Maki; Kazuyoshi Yonezawa; Ed Hurt; Masaru Ueno; Masahiro Uritani; Michael N. Hall; Takashi Ushimaru
The protein kinase TOR (target of rapamycin) controls several steps of ribosome biogenesis, including gene expression of rRNA and ribosomal proteins, and processing of the 35S rRNA precursor, in the budding yeast Saccharomyces cerevisiae. Here we show that TOR also regulates late stages of ribosome maturation in the nucleoplasm via the nuclear GTP‐binding protein Nog1. Nog1 formed a complex that included 60S ribosomal proteins and pre‐ribosomal proteins Nop7 and Rlp24. The Nog1 complex shuttled between the nucleolus and the nucleoplasm for ribosome biogenesis, but it was tethered to the nucleolus by both nutrient depletion and TOR inactivation, causing cessation of the late stages of ribosome biogenesis. Furthermore, after this, Nog1 and Nop7 proteins were lost, leading to complete cessation of ribosome maturation. Thus, the Nog1 complex is a critical regulator of ribosome biogenesis mediated by TOR. This is the first description of a physiological regulation of nucleolus‐to‐nucleoplasm translocation of pre‐ribosome complexes.
Structure | 2010
Takayuki Kato; Hideji Yoshida; Tomoko Miyata; Yasushi Maki; Akira Wada; Keiichi Namba
In the stationary growth phase of bacteria, protein biosynthesis on ribosomes is suppressed, and the ribosomes are preserved in the cell by the formation of the 100S ribosome. The 100S ribosome is a dimer of the 70S ribosome and is formed by the binding of the ribosome modulation factor and the hibernation promoting factor. However, the binding mode between the two 70S ribosomes and the mechanism of complex formation are still poorly understood. Here, we report the structure of the 100S ribosome by electron cryomicroscopy and single-particle image analysis. The 100S ribosome purified from the cell in the stationary growth phase is composed of two transfer RNA-free 70S ribosomes, has two-fold symmetry, and is formed through interactions between their 30S subunits, where interactions between small subunit proteins, S2, S3 and S5, appear to be critical for the dimerization.
Biophysical Journal | 2008
Mohammad Delawar Hossain; Shou Furuike; Yasushi Maki; Kengo Adachi; Toshiharu Suzuki; Ayako Kohori; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. The amino and carboxy termini of the γ-subunit form the axle, an α-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25–40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120° intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.
Biochemical Journal | 2006
Takaomi Nomura; Kohji Nakano; Yasushi Maki; Takao Naganuma; Takashi Nakashima; Isao Tanaka; Makoto Kimura; Akira Hachimori; Toshio Uchiumi
We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.
Journal of Biological Chemistry | 2007
Yasushi Maki; Tetsuo Hashimoto; Min Zhou; Takao Naganuma; Jun Ohta; Takaomi Nomura; Carol V. Robinson; Toshio Uchiumi
Ribosomes have a characteristic protuberance termed the stalk, which is indispensable for ribosomal function. The ribosomal stalk has long been believed to be a pentameric protein complex composed of two sets of protein dimers, L12-L12, bound to a single anchor protein, although ribosomes carrying three L12 dimers were recently discovered in a few thermophilic bacteria. Here we have characterized the stalk complex from Pyrococcus horikoshii, a thermophilic species of Archaea. This complex is known to be composed of proteins homologous to eukaryotic counterparts rather than bacterial ones. In truncation experiments of the C-terminal regions of the anchor protein Ph-P0, we surprisingly observed three Ph-L12 dimers bound to the C-terminal half of Ph-P0, and the binding site for the third dimer was unique to the archaeal homologs. The stoichiometry of the heptameric complex Ph-P0(Ph-L12)2(Ph-L12)2(Ph-L12)2 was confirmed by mass spectrometry of the intact complex. In functional tests, ribosomes carrying a single Ph-L12 dimer had significant activity, but the addition of the second and third dimers increased the activity. A bioinformatics analysis revealed the evidence that ribosomes from all archaeal and also from many bacterial organisms may contain a heptameric complex at the stalk, whereas eukaryotic ribosomes seem to contain exclusively a pentameric stalk complex, thus modifying our view of the stalk structure significantly.
Genes to Cells | 2009
Hideji Yoshida; Masami Ueta; Yasushi Maki; Akiko Sakai; Akira Wada
The canonical ribosome cycle in bacteria consists of initiation, elongation, termination, and recycling stages. After the recycling stage, initiation factor 3 (IF3) stabilizes ribosomal dissociation by binding to 30S subunits for the next round of translation. On the other hand, during the stationary growth phase, it has been elucidated that Escherichia coli ribosomes are dimerized (100S ribosome formation) by binding ribosome modulation factor (RMF) and hibernation promoting factor (HPF), leading to a hibernation stage. This indicates that 100S ribosomes are formed after these factors are scrambled for ribosomes concomitantly with transition from the log phase to the stationary phase. In this study, to elucidate the ribosomal events before 100S ribosome formation, the relationships between protein factors (RMF and HPF) involved in 100S ribosome formation and IF3 involved in initiation complex formation were examined. As a result of in vitro assays, it was found that ribosomal dissociation activity by IF3 fell, and that ribosomal dimerization activity by RMF and HPF was elevated more when using stationary‐phase ribosomes than when using log‐phase ribosomes. This suggests that ribosomes change into forms which are hard to bind with IF3 and easy to form 100S ribosomes by RMF and HPF concomitantly with transition from the log phase to the stationary phase.