Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shouxiong Huang is active.

Publication


Featured researches published by Shouxiong Huang.


Nature Immunology | 2010

Antimicrobial activity of mucosal-associated invariant T cells

Lionel Le Bourhis; Emmanuel Martin; Isabelle Peguillet; Amélie Guihot; Nathalie Froux; Maxime Coré; Eva Lévy; Mathilde Dusseaux; Vanina Meyssonnier; Virginie Premel; Charlotte Ngo; Béatrice Riteau; Livine Duban; Delphine Robert; Shouxiong Huang; Martin Rottman; Claire Soudais; Olivier Lantz

Mucosal-associated invariant T lymphocytes (MAIT lymphocytes) are characterized by two evolutionarily conserved features: an invariant T cell antigen receptor (TCR) α-chain and restriction by the major histocompatibility complex (MHC)-related protein MR1. Here we show that MAIT cells were activated by cells infected with various strains of bacteria and yeast, but not cells infected with virus, in both humans and mice. This activation required cognate interaction between the invariant TCR and MR1, which can present a bacteria-derived ligand. In humans, we observed considerably fewer MAIT cells in blood from patients with bacterial infections such as tuberculosis. In the mouse, MAIT cells protected against infection by Mycobacterium abscessus or Escherichia coli. Thus, MAIT cells are evolutionarily conserved innate-like lymphocytes that sense and help fight off microbial infection.


Microbes and Infection | 2002

Outer membrane proteins: key players for bacterial adaptation in host niches.

Jun Lin; Shouxiong Huang; Qijing Zhang

Outer membrane proteins (OMPs) of Gram-negative bacteria have diverse functions and are directly involved in the interaction with various environments encountered by pathogenic organisms. Thus, OMPs represent important virulence factors and play essential roles in bacterial adaptation to host niches, which are usually hostile to invading pathogens. Understanding the structure and functions of bacterial OMPs will facilitate the design of antimicrobial drugs and vaccines. In this paper, we will present a brief review on OMPs that contribute to bacterial adaptive responses including iron uptake, antimicrobial peptide resistance, serum resistance, and drug/bile resistance.


Applied and Environmental Microbiology | 2006

Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry.

Taradon Luangtongkum; Teresa Y. Morishita; Aaron J. Ison; Shouxiong Huang; Patrick F. McDermott; Qijing Zhang

ABSTRACT Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.


Applied and Environmental Microbiology | 2003

Effect of Campylobacter-Specific Maternal Antibodies on Campylobacter jejuni Colonization in Young Chickens

Orhan Sahin; Naidan Luo; Shouxiong Huang; Qijing Zhang

ABSTRACT Using laboratory challenge experiments, we examined whether Campylobacter-specific maternal antibody (MAB) plays a protective role in young chickens, which are usually free of Campylobacter under natural production conditions. Kinetics of C. jejuni colonization were compared by infecting 3-day-old broiler chicks, which were naturally positive for Campylobacter-specific MAB, and 21-day-old broilers, which were negative for Campylobacter-specific MAB. The onset of colonization occurred much sooner in birds challenged at the age of 21 days than it did in the birds inoculated at 3 days of age, which suggested a possible involvement of specific MAB in the delay of colonization. To further examine this possibility, specific-pathogen-free layer chickens were raised under laboratory conditions with or without Campylobacter infection, and their 3-day-old progenies with (MAB+) or without (MAB−) Campylobacter-specific MAB were orally challenged with C. jejuni. Significant decreases in the percentage of colonized chickens were observed in the MAB+ group during the first week compared with the MAB− group. These results indicate that Campylobacter-specific MAB plays a partial role in protecting young chickens against colonization by C. jejuni. Presence of MAB in young chickens did not seem to affect the development of systemic immune response following infection with C. jejuni. However, active immune responses to Campylobacter occurred earlier and more strongly in birds infected at 21 days of age than those infected at 3 days of age. Clearance of Campylobacter infection was also observed in chickens infected at 21 days of age. Taken together, these findings (i) indicate that anti-Campylobacter MAB contributes to the lack of Campylobacter infection in young broiler chickens in natural environments and (ii) provide further evidence supporting the feasibility of development of immunization-based approaches for control of Campylobacter infection in poultry.


Proceedings of the National Academy of Sciences of the United States of America | 2009

MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution

Shouxiong Huang; Emmanuel Martin; Sojung Kim; Lawrence Yu; Claire Soudais; Daved H. Fremont; Olivier Lantz; Ted H. Hansen

Several nonclassical major histocompatibilty antigens (class Ib molecules) have emerged as key players in the early immune response to pathogens or stress. Class Ib molecules activate subsets of T cells that mount effector responses before the adaptive immune system, and thus are called innate T cells. MR1 is a novel class Ib molecule with properties highly suggestive of its regulation of mucosal immunity. The Mr1 gene is evolutionarily conserved, is non-Mhc linked, and controls the development of mucosal-associated invariant T (MAIT) cells. MAIT cells preferentially reside in the gut, and their development is dependent on commensal microbiota. Although these properties suggest that MAIT cells function as innate T cells in the mucosa, this has been difficult to test, due to the (i) paucity of MAIT cells that display MR1-specific activation in vitro and (ii) lack of knowledge of whether or not MR1 presents antigen. Here we show that both mouse and human MAIT cells display a high level of cross-reactivity on mammalian MR1 orthologs, but with differences consistent with limited ligand discrimination. Furthermore, acid eluates from recombinant or cellular MR1 proteins enhance MAIT cell activation in an MR1-specific and cross-species manner. Our findings demonstrate that the presentation pathway of MR1 to MAIT cells is highly evolutionarily conserved.


Journal of Biological Chemistry | 2005

Evidence for MR1 Antigen Presentation to Mucosal-associated Invariant T Cells

Shouxiong Huang; Susan Gilfillan; Marina Cella; Michael J. Miley; Olivier Lantz; Lonnie Lybarger; Daved H. Fremont; Ted H. Hansen

The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its α1/α2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) α chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/αβTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.


Nature Immunology | 2014

CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens

Annemieke de Jong; Tan-Yun Cheng; Shouxiong Huang; Stephanie Gras; Richard W. Birkinshaw; Anne Kasmar; Ildiko Van Rhijn; Victor Pena-Cruz; Daniel T Ruan; John D. Altman; Jamie Rossjohn; D. Branch Moody

T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non–ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.


Infection and Immunity | 2000

Sequence polymorphism, predicted secondary structures, and surface-exposed conformational epitopes of Campylobacter major outer membrane protein.

Qijing Zhang; Jerrel C. Meitzler; Shouxiong Huang; Teresa Y. Morishita

ABSTRACT The major outer membrane protein (MOMP), a putative porin and a multifunction surface protein of Campylobacter jejuni, may play an important role in the adaptation of the organism to various host environments. To begin to dissect the biological functions and antigenic features of this protein, the gene (designatedcmp) encoding MOMP was identified and characterized from 22 strains of C. jejuni and one strain of C. coli. It was shown that the single-copy cmp locus encoded a protein with characteristics of bacterial outer membrane proteins. Prediction from deduced amino acid sequences suggested that each MOMP subunit consisted of 18 β-strands connected by short periplasmic turns and long irregular external loops. Alignment of the amino acid sequences of MOMP from different strains indicated that there were seven localized variable regions dispersed among highly conserved sequences. The variable regions were located in the putative external loop structures, while the predicted β-strands were formed by conserved sequences. The sequence homology of cmp appeared to reflect the phylogenetic proximity of C. jejuni strains, since strains with identical cmp sequences had indistinguishable or closely related macrorestriction fragment patterns. Using recombinant MOMP and antibodies recognizing linear or conformational epitopes of the protein, it was demonstrated that the surface-exposed epitopes of MOMP were predominantly conformational in nature. These findings are instrumental in the design of MOMP-based diagnostic tools and vaccines.


Journal of Experimental Medicine | 2013

CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens

Dalam Ly; Anne Kasmar; Tan Yun Cheng; Annemieke de Jong; Shouxiong Huang; Sobhan Roy; Apoorva Bhatt; Ruben P. van Summeren; John D. Altman; William R. Jacobs; Erin J. Adams; Adriaan J. Minnaard; Steven A. Porcelli; D. Branch Moody

CD1c tetramers loaded with a phospholipid antigen from M. tuberculosis are recognized by human T cells.


Journal of Immunology | 2011

Endogenous MHC-Related Protein 1 Is Transiently Expressed on the Plasma Membrane in a Conformation That Activates Mucosal-Associated Invariant T Cells

Wei-Jen Chua; Sojung Kim; Nancy B. Myers; Shouxiong Huang; Lawrence Yu; Daved H. Fremont; Michael S. Diamond; Ted H. Hansen

The development of mucosal-associated invariant T (MAIT) cells is dependent upon the class Ib molecule MHC-related protein 1 (MR1), commensal bacteria, and a thymus. Furthermore, recent studies have implicated MR1 presentation to MAIT cells in bacteria recognition, although the mechanism remains undefined. Surprisingly, however, surface expression of MR1 has been difficult to detect serologically, despite ubiquitous detection of MR1 transcripts and intracellular protein. In this article, we define a unique mAb capable of stabilizing endogenous mouse MR1 at the cell surface, resulting in enhanced mouse MAIT cell activation. Our results demonstrated that under basal conditions, endogenous MR1 transiently visits the cell surface, thus reconciling the aforementioned serologic and functional studies. Furthermore, using this approach, double-positive thymocytes, macrophages, and dendritic cells were identified as potential APCs for MAIT cell development and activation. Based on this pattern of MR1 expression, it is intriguing to speculate that constitutive expression of MR1 may be detrimental for maintenance of immune homeostasis in the gut and/or detection of pathogenic bacteria in mucosal tissues.

Collaboration


Dive into the Shouxiong Huang's collaboration.

Top Co-Authors

Avatar

Ted H. Hansen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daved H. Fremont

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Branch Moody

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sojung Kim

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tan-Yun Cheng

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrea J. Sant

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence Yu

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge