Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu-Heng Jiang is active.

Publication


Featured researches published by Shu-Heng Jiang.


Tumor Biology | 2014

LRG1 is an independent prognostic factor for endometrial carcinoma

Shan-Yun Wen; Li-Na Zhang; Xiao-Mei Yang; Yan-Li Zhang; Li Ma; Qiu-Lin Ge; Shu-Heng Jiang; Xiao-Lu Zhu; Wei Xu; Wen-Jing Ding; Bing-Qing Yang; Zhi-Gang Zhang; Yin-Cheng Teng

Endometrial cancer (EC) is one of the most common female malignancies. The patients with high-risk factors may have poor prognosis. Therefore, there is an urgent need to find a new molecule to more accurately predict survival of patients. Leucine-rich-alpha-2-glycoprotein1 (LRG1), one of leucine-rich repeat family, was closely associated with cancer metastasis and poor prognosis. The biological functions and the expression level of LRG1 remain obscure in EC. In this study, by immunohistochemical analysis of 242 EC patient tissues, we found that LRG1 expression was associated with stage and lymphatic metastasis in both test cohort (133 patients) and validation cohort (109 patients). Furthermore, to investigate the prognostic value of LRG1 in endometrial carcinoma, we analyzed the correlation between variables and overall survival with Cox proportional hazard regression. The result showed that LRG1 was an independent prognostic factor for overall survival of endometrial carcinoma patients. To further evaluate the prognostic efficiency of LRG1 in endometrial carcinoma, we compared the sensitivity and specificity of LRG1 in endometrial carcinoma prognosis by logistic regression. The result showed that LRG1 combining with other clinicopathological risk factors was a stronger prognostic model than clinicopathological risk factors alone or their combination. Thus, LRG1 potentially offered clinical value in directing personal treatment for endometrial carcinoma patients.


Journal of Cancer Research and Clinical Oncology | 2015

Lysyl oxidase-like 4 (LOXL4) promotes proliferation and metastasis of gastric cancer via FAK/Src pathway

Rong-Kun Li; Wen-Yi Zhao; Fang Fang; Chun Zhuang; Xiao-Xin Zhang; Xiao-Mei Yang; Shu-Heng Jiang; Fan-Zhi Kong; Lin Tu; Wen-Ming Zhang; Shengli Yang; Hui Cao; Zhi-Gang Zhang

AbstractBackground Lysyl oxidase-like 4 (LOXL4) has been found up-regulated in a variety of human malignancies, but its clinical significance and functional roles in gastric cancer (GC) remain unknown.MethodsLysyl oxidase-like 4 (LOXL4) expression level in tumor tissues and human GC cell lines was evaluated by quantitative real-time polymerase chain reaction, Western blotting and immunohistochemical analyses. Its clinical significance was inferred from the analysis of 379 tissue samples of patients with GC using tissue microarray. The roles of LOXL4 in cell proliferation, migration and invasion in vitro were analyzed by gene over-expression, RNA interference and recombinant protein. Effects of LOXL4 on regulation of focal adhesion kinase/Src kinase (FAK/Src) pathway were examined by Western blotting.ResultsLysyl oxidase-like 4 (LOXL4) was up-regulated in GC tissues relative to paired non-tumor tissues, and this over-expression was significantly associated with tumor size, depth of tumor invasion, lymph node metastasis, tumor-node-metastasis (TNM) stages and poorer overall survival. Over-expression of LOXL4 has promotive effects on GC cell proliferation, migration and invasion in vitro, consistent with this, LOXL4 knockdown has inhibitive effects on GC cell proliferation, migration and invasion. Furthermore, recombinant human LOXL4 protein also promoted GC cell proliferation and migration. Subsequent mechanistic studies showed that LOXL4 could activate FAK/Src pathway to enhance cell–extracellular matrix adhesion.ConclusionsTaken together, our data reveal that up-regulation of LOXL4 expression is a frequent event in GC progression, contributes to tumor cell proliferation and metastasis, and LOXL4 may be a potential independent prognostic marker and therapeutic target for GC.


Scientific Reports | 2015

Decreased LKB1 predicts poor prognosis in Pancreatic Ductal Adenocarcinoma

Jian-Yu Yang; Shu-Heng Jiang; De-Jun Liu; Xiao-Mei Yang; Yan-Miao Huo; Jiao Li; Rong Hua; Zhi-Gang Zhang; Yong-Wei Sun

Liver kinase B1 (LKB1) has been identified as a critical modulator involved in cell proliferation and polarity. The purpose of the current study was to characterize the expression pattern of LKB1 and assess the clinical significance of LKB1 expression in pancreatic ductal adenocarcinoma (PDAC) patients. LKB1 mRNA expression which was analyzed in 32 PDAC lesions and matched non-tumor tissues, was downregulated in 50% (16/32) of PDAC lesions. Similar results were also obtained by analyzing three independent datasets from Oncomine. Protein expression of LKB1 was significantly reduced in 6 PDAC cell lines and downregulated in 31.3% (10/32) of PDAC lesions compared to matched non-tumorous tissues, as determined by Western blot analysis. Additionally, tissue microarray containing 205 PDAC specimens was evaluated for LKB1 expression by IHC and demonstrated that reduced expression of LKB1 in 17.6% (36/205) of PDAC tissues was significantly correlated with clinical stage, T classification, N classification, liver metastasis and vascular invasion. Importantly, Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of PDAC and found that LKB1 protein expression was one of the independent prognostic factors for overall survival of PDAC patients.


Cancer Research | 2018

SPON2 Promotes M1-like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin–Rho GTPase–Hippo Pathways

Yan-Li Zhang; Qing Li; Xiao-Mei Yang; Fang Fang; Jun Li; Ya-Hui Wang; Qin Yang; Lei Zhu; Hui-Zhen Nie; Xue-Li Zhang; Ming-Xuan Feng; Shu-Heng Jiang; Guang-Ang Tian; Lipeng Hu; Ho-Young Lee; Su-Jae Lee; Qiang Xia; Zhi-Gang Zhang

Tumor-associated macrophages (TAM) represent key regulators of the complex interplay between cancer and the immune microenvironment. Matricellular protein SPON2 is essential for recruiting lymphocytes and initiating immune responses. Recent studies have shown that SPON2 has complicated roles in cell migration and tumor progression. Here we report that, in the tumor microenvironment of hepatocellular carcinoma (HCC), SPON2 not only promotes infiltration of M1-like macrophages but also inhibits tumor metastasis. SPON2-α4β1 integrin signaling activated RhoA and Rac1, increased F-actin reorganization, and promoted M1-like macrophage recruitment. F-Actin accumulation also activated the Hippo pathway by suppressing LATS1 phosphorylation, promoting YAP nuclear translocation, and initiating downstream gene expression. However, SPON2-α5β1 integrin signaling inactivated RhoA and prevented F-actin assembly, thereby inhibiting HCC cell migration; the Hippo pathway was not noticeably involved in SPON2-mediated HCC cell migration. In HCC patients, SPON2 levels correlated positively with prognosis. Overall, our findings provide evidence that SPON2 is a critical factor in mediating the immune response against tumor cell growth and migration in HCC.Significance: Matricellular protein SPON2 acts as an HCC suppressor and utilizes distinct signaling events to perform dual functions in HCC microenvironment.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/9/2305/F1.large.jpg Cancer Res; 78(9); 2305-17. ©2018 AACR.


Oncotarget | 2016

Overexpressed EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in human pancreatic cancer.

Shu-Heng Jiang; Yang Wang; J. Yang; Jun Li; Ming-Xuan Feng; Ya-Hui Wang; Xiao-Mei Yang; Ping He; Guang-Ang Tian; Xiao-Xin Zhang; Qing Li; Xiao-Yan Cao; Yan-Miao Huo; Min-Wei Yang; Xue-Liang Fu; Jiao Li; De-Jun Liu; Miao Dai; Shan-Yun Wen; Jianren Gu; Jie Hong; Rong Hua; Zhi-Gang Zhang; Yong-Wei Sun

Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3), an extracellular matrix (ECM) protein associated with vascular morphogenesis and remodeling, is commonly upregulated in multiple types of human cancers and correlates with tumor progression. However, its expression pattern and underlying cellular functions in pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. In current study, we observed that expression of EDIL3 was significantly up-regulated in PDAC compared with normal controls in both cell lines and clinical specimens. In addition, elevated EDIL3 expression was positively correlated with patients’ TNM stage and T classification. Kaplan-Meier analysis indicated that high EDIL3 expression was significantly associated with shorter overall survival times in PDAC patients. Multivariate Cox regression analysis confirmed EDIL3 expression, age, lymph node metastasis and histological differentiation as independent prognostic factors in PDAC. Knockdown of EDIL3 showed no significant influence on cell viability, migration, invasion and starvation-induced apoptosis, but compromised anoikis resistance and anchorage independent tumor growth of PDAC cells. Meanwhile, treatment with recombinant EDIL3 protein markedly promoted anoikis resistance and anchorage independent tumor growth. Mechanistically, we demonstrated that altered protein expression of Bcl-2 family might contribute to the oncogenic activities of EDIL3. In conclusion, this study provides evidences that EDIL3 is a potential predictor and plays an important role in anchorage independent tumor growth of PDAC and EDIL3-related pathways might represent a novel therapeutic strategy for treatment of pancreatic cancer.


Osteoporosis International | 2012

Differential responsiveness to 17β-estradiol of mesenchymal stem cells from postmenopausal women between osteoporosis and osteoarthritis

W.-J. Jin; Shu-Heng Jiang; L.-S. Jiang; L.-Y. Dai

SummaryDifferential osteogenic potential and responsiveness to 17β-estradiol (E2) of mesenchymal stem cells (MSCs) were found between postmenopausal women with osteoporosis (OP) and osteoarthritis (OA). These results suggest differential biological mechanisms of estrogen deficiency in regulation of bone remodeling between OP and OA.IntroductionOP and OA are two common disorders in postmenopausal women. The inverse relationship has been suggested between OP and OA, but their mechanisms that relate to estrogen deficiency are not fully understood. The aim of this study was to compare the differential responsiveness to E2 of MSCs from osteoporotic versus osteoarthritic donors.MethodsTwenty postmenopausal patients, ten with osteoporotic hip fractures and ten with hip osteoarthritis, were included into this study. MSCs were derived from cancellous bones of femoral heads from OA and OP donors and cultured in osteogenic and adipogenic medium with or without E2 added. The alkaline phosphatase (ALP) activity, calcium content, calcified nodules, lipid droplets, messenger RNA (mRNA) expression of ALP, osteocalcin (OC), collagen 1α (COL1α), peroxisome proliferators-activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) were measured and compared between two groups with OP and OA.ResultsIn osteogenic medium, ALP activity, calcium content and mRNA expression of OC and COL1α in MSCs from OA were significantly higher than those from OP group. In adipogenic condition, there was no significant difference in lipid droplets formation and mRNA expression of PPARγ2 and LPL between OP and OA groups. With E2 added in osteogenic medium, ALP activity, calcium content and OC mRNA were significantly higher in OP group than in OA group, whereas E2 had no significant effect on lipid droplet formation and mRNA expression of PPARγ2 and LPL.ConclusionDifferential osteogenic potential and responsiveness to E2 of MSCs were found between postmenopausal women with OP and OA. These results may provide information for clinical application of MSCs in the differential setting of estrogen deficiency.


Scientific Reports | 2017

Structural diversity of anti-pancreatic cancer capsimycins identified in mangrove-derived Streptomyces xiamenensis 318 and post-modification via a novel cytochrome P450 monooxygenase

Helin Yu; Shu-Heng Jiang; Xu-Liang Bu; Jia-Hua Wang; Jing-Yi Weng; Xiao-Mei Yang; Kun-Yan He; Zhi-Gang Zhang; Ping Ao; Jun Xu; Min-Juan Xu

Polycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds—ikarugamycin (1), capsimycin (2) and capsimycin B (3)—two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method. The post-modification mechanism of the carbocyclic ring at C-14/C-13 of compound 1 in the biosynthesis of an important intermediate 3 was investigated. A putative cytochrome P450 superfamily gene, SXIM_40690 (ikaD), which was proximally localized to the ikarugamycin biosynthetic pathway, was characterized. In vivo gene inactivation and complementation experiment confirmed that IkaD catalysed the epoxide-ring formation reaction and further hydroxylation of ethyl side chain to form capsimycin G (3′). Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD were measured with Surface Plasmon Resonance. The intermediate compound 3′ was isolated and identified as 30-hydroxyl-capsimycin B. The caspimycins 2 and 3, were transferred to methoxyl derivatives, 6 and 7, under acidic and heating conditions. Compounds 1–3 exhibited anti-proliferative activities against pancreatic carcinoma with IC50 values of 1.30–3.37 μM.


Scientific Reports | 2016

CCBE1 promotes GIST development through enhancing angiogenesis and mediating resistance to imatinib

Guang-Ang Tian; Chun-Chao Zhu; Xiao-Xin Zhang; Lei Zhu; Xiao-Mei Yang; Shu-Heng Jiang; Rong-Kun Li; Lin Tu; Yang Wang; Chun Zhuang; Ping He; Qing Li; Xiao-Yan Cao; Hui Cao; Zhi-Gang Zhang

Gastrointestinal stromal tumor (GIST) is the most major mesenchymal neoplasm of the digestive tract. Up to now, imatinib mesylate has been used as a standard first-line treatment for irresectable and metastasized GIST patients or adjuvant treatment for advanced GIST patients who received surgical resection. However, secondary resistance to imatinib usually happens, resulting in a major obstacle in GIST successful therapy. In this study, we first found that collagen and calcium binding EGF domains 1 (CCBE1) expression gradually elevated along with the risk degree of NIH classification, and poor prognosis emerged in the CCBE1-positive patients. In vitro experiments showed that recombinant CCBE1 protein can enhance angiogenesis and neutralize partial effect of imatinib on the GIST-T1 cells. In conclusion, these data indicated that CCBE1 may be served as a new predictor of prognosis in post-operative GIST patients and may play an important role in stimulating GIST progression.


Scientific Reports | 2017

Cholesterol Synthetase DHCR24 Induced by Insulin Aggravates Cancer Invasion and Progesterone Resistance in Endometrial Carcinoma

Miao Dai; Xiao-Lu Zhu; Fei Liu; Qinyang Xu; Qiu-Lin Ge; Shu-Heng Jiang; Xiao-Mei Yang; Jun Li; Ya-Hui Wang; Qingkai Wu; Zhihong Ai; Yincheng Teng; Zhi-Gang Zhang

3β-Hydroxysteroid-Δ24 reductase (DHCR24), the final enzyme of the cholesterol biosynthetic pathway, has been associated with urogenital neoplasms. However, the function of DHCR24 in endometrial cancer (EC) remains largely elusive. Here, we analyzed the expression profile of DHCR24 and the progesterone receptor (PGR) in our tissue microarray of EC (n = 258), the existing EC database in GEO (Gene Expression Omnibus), and TCGA (The Cancer Genome Atlas). We found that DHCR24 was significantly elevated in patients with EC, and that the up-regulation of DHCR24 was associated with advanced clinical stage, histological grading, vascular invasion, lymphatic metastasis, and reduced overall survival. In addition, DHCR24 expression could be induced by insulin though STAT3, which directly binds to the promoter elements of DHCR24, as demonstrated by ChIP-PCR and luciferase assays. Furthermore, genetically silencing DHCR24 inhibited the metastatic ability of endometrial cancer cells and up-regulated PGR expression, which made cells more sensitive to progestin. Taken together, we have demonstrated for the first time the crucial role of the insulin/STAT3/DHCR24/PGR axis in the progression of EC by modulating the metastasis and progesterone response, which could serve as potential therapeutic targets for the treatment of EC with progesterone receptor loss.


Oncogene | 2018

SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis

Fei Liu; Miao Dai; Qinyang Xu; Xiao-Lu Zhu; Yang Zhou; Shu-Heng Jiang; Ya-Hui Wang; Zhihong Ai; Li Ma; Yan-Li Zhang; Lipeng Hu; Qin Yang; Jun Li; Shujie Zhao; Zhi-Gang Zhang; Yincheng Teng

High-risk human papillomavirus oncoproteins E6 and E7 are the major etiological factors of cervical cancer but are insufficient for malignant transformation of cervical cancer. Dysregulated alternative splicing, mainly ascribed to aberrant splicing factor levels and activities, contributes to most cancer hallmarks. However, do E6 and E7 regulate the expression of splicing factors? Does alternative splicing acts as an “accomplice” of E6E7 to promote cervical cancer progression? Here, we identified that the splicing factor SRSF10, which promotes tumorigenesis of cervix, was upregulated by E6E7 via E2F1 transcriptional activation. SRSF10 modulates the alternate terminator of interleukin-1 receptor accessory protein exon 13 to increase production of the membrane form of interleukin-1 receptor accessory protein. SRSF10-mediated mIL1RAP upregulates the expression of the “don’t eat me” signal CD47 to inhibit macrophage phagocytosis by promoting nuclear factor-κB activation, which is pivotal in inflammatory, immune, and tumorigenesis processes. Altogether, these data reveal a close relationship among HPV infection, alternative splicing and tumor immune evasion, and also suggests that the SRSF10-mIL1RAP-CD47 axis could be an attractive therapeutic target for the treatment of cervical cancer.

Collaboration


Dive into the Shu-Heng Jiang's collaboration.

Top Co-Authors

Avatar

Zhi-Gang Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Mei Yang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jun Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guang-Ang Tian

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ya-Hui Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Xin Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qing Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Rong-Kun Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yong-Wei Sun

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Fang Fang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge