Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu-Yan Ji is active.

Publication


Featured researches published by Shu-Yan Ji.


Nature Structural & Molecular Biology | 2016

BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes

Chao Yu; Shu-Yan Ji; Qian-Qian Sha; Yujiao Dang; Jian-Jie Zhou; Yin-Li Zhang; Yang Liu; Zhong-Wei Wang; Boqiang Hu; Qing-Yuan Sun; Shao-Chen Sun; Fuchou Tang; Heng-Yu Fan

The mRNAs stored in oocytes undergo general decay during the maternal-zygotic transition (MZT), and their stability is tightly interconnected with meiotic cell-cycle progression. However, the factors that trigger decay of maternal mRNA and couple this event to oocyte meiotic maturation remain elusive. Here, we identified B-cell translocation gene-4 (BTG4) as an MZT licensing factor in mice. BTG4 bridged CNOT7, a catalytic subunit of the CCR4–NOT deadenylase, to eIF4E, a key translation initiation factor, and facilitated decay of maternal mRNA. Btg4-null females produced morphologically normal oocytes but were infertile, owing to early developmental arrest. The intrinsic MAP kinase cascade in oocytes triggered translation of Btg4 mRNA stored in fully grown oocytes by targeting the 3′ untranslated region, thereby coupling CCR4–NOT deadenylase–mediated decay of maternal mRNA with oocyte maturation and fertilization. This is a key step in oocyte cytoplasmic maturation that determines the developmental potential of mammalian embryos.


Cell Research | 2016

Oocyte-expressed yes-associated protein is a key activator of the early zygotic genome in mouse.

Chao Yu; Shu-Yan Ji; Yujiao Dang; Qian-Qian Sha; Yi-Feng Yuan; Jian-Jie Zhou; Liying Yan; Jie Qiao; Fuchou Tang; Heng-Yu Fan

In early mammalian embryos, the genome is transcriptionally quiescent until the zygotic genome activation (ZGA) which occurs 2-3 days after fertilization. Despite a long-standing effort, maternal transcription factors regulating this crucial developmental event remain largely elusive. Here, using maternal and paternal mouse models of Yap1 deletion, we show that maternally accumulated yes-associated protein (YAP) in oocyte is essential for ZGA. Maternal Yap1-knockout embryos exhibit a prolonged two-cell stage and develop into the four-cell stage at a much slower pace than the wild-type controls. Transcriptome analyses identify YAP target genes in early blastomeres; two of which, Rpl13 and Rrm2, are required to mediate maternal YAPs effect in conferring developmental competence on preimplantation embryos. Furthermore, the physiological YAP activator, lysophosphatidic acid, can substantially improve early development of wild-type, but not maternal Yap1-knockout embryos in both oviduct and culture. These observations provide insights into the mechanisms of ZGA, and suggest potentials of YAP activators in improving the developmental competence of cultured embryos in assisted human reproduction and animal biotechnology.


Nature Communications | 2015

CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation

Chao Yu; Shu-Yan Ji; Qian-Qian Sha; Qing-Yuan Sun; Heng-Yu Fan

Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility.


Molecular Endocrinology | 2013

TOP2β Is Essential for Ovarian Follicles That Are Hypersensitive to Chemotherapeutic Drugs

Yin-Li Zhang; Chao Yu; Shu-Yan Ji; Xiao-Meng Li; Yong-Ping Zhang; Dan Zhang; Dawang Zhou; Heng-Yu Fan

The mechanisms underlying chemotherapy-induced acceleration of ovarian insufficiency are not fully understood, particularly for ovarian granulosa cells (GCs). We used two widely used cancer chemotherapeutic reagents, bleomycin and VP-16, and an in vivo GC-specific DNA topoisomerase II-β (TOP2β) (Top2b) knockout mouse model to investigate the effects of chemotherapy-induced DNA damage on growing mouse follicles. Bleomycin and VP-16 caused massive double-strand DNA breaks in the GCs of growing follicles in a time-dependent manner as shown by DNA-damage checkpoint activation. This damage was associated with apoptotic GC death and resulted in follicle atresia and ovulation failure. However, FSH-regulated ovarian functions, including estrogen biosynthesis and estrogen target gene expression, were not significantly affected by these genotoxins. TOP2β, a target of several chemotherapeutic drugs including VP-16, was abundantly expressed in the GCs of growing follicles. GC-specific deletion of Top2b using Cyp19-Cre caused DNA damage accumulations in these cells, follicle atresia, and decreased ovulation in response to exogenous gonadotropins. The ovaries of Top2b conditional knockout mice were also more sensitive to low-dose genotoxin treatment than wild-type mice ovaries. Thus, our results indicate that GCs are hypersensitive to genotoxic chemotherapeutic drugs and can activate the canonical DNA-damage checkpoint and the p53-dependent apoptotic pathway in response to insults that damage DNA. We also newly identified TOP2β as a factor involved in regulating GC genomic integrity and follicle atresia. This study has clinical implications for ovarian functional defects both for premenopausal cancer survivors and healthy women.


Human Reproduction | 2016

Development and characterization of a novel long-acting recombinant follicle stimulating hormone agonist by fusing Fc to an FSH-β subunit

Yin-Li Zhang; Kangping Guo; Shu-Yan Ji; Xiao-Man Liu; Pilin Wang; Jie Wu; Li Gao; Tian-Qi Jiang; Ting Xu; Heng-Yu Fan

STUDY QUESTION Does a novel long-acting recombinant human FSH, KN015, a heterodimer composed of FSHα and FSHβ-Fc/Fc, offer a potential FSH alternative? SUMMARY ANSWER KN015 had in vitro activity and superior in vivo bioactivity than recombinant human FSH (rhFSH), suggesting KN015 could serve as a potential FSH agonist for clinical therapy. WHAT IS KNOWN ALREADY rhFSH has very short half-life so that repeat injections are needed, resulting in discomfort and inconvenience for patients. The longest-acting rhFSH available in clinics is corifollitropin alpha (FSH-CTP), but its half-life is not long enough to sustain the whole therapy period, and additional injections of rhFSH are needed. STUDY DESIGN, SIZE, DURATION Plasmids containing FSHα, FSHβ-Fc and Fc cDNA were transfected into Chinese hamster ovary (CHO) cells for KN015 production. The pharmacokinetics of KN015 was investigated in 6-week-old SD rats (n = 6/group) and healthy Cynomolgus monkeys in two different dose groups (n = 2/group). A series of experiments were designed for in vitro and in vivo characterization of the bioactivity of KN015 relative to rhFSH. PARTICIPANTS/MATERIALS, SETTING, METHODS The purity and molecular weight of KN015 were determined by reducing and non-reducing SDS-PAGE. To measure KN015 half-life, sera were collected at increasing time points and the remaining FSH concentration was measured by enzyme-linked immunosorbent assay. To assess the bioactivity of KN015 versus rhFSH in vitro, firstly cAMP production was assessed in CHO cells expressing FSH receptor (FSHR) with the treatment of Fc/Fc, rhFSH or KN015 at eight different doses (0.03, 0.09, 0.28, 0.83, 2.5, 7.5, 22.5, 67.5 nM), and secondly cumulus oocyte complexes (COCs; n = 20/group) of ICR mice (primed-PMSG 44 h before sacrificed) were collected and cultured in medium containing 1.25 pM Fc/Fc, rhFSH or KN015 at 37°C and then germinal vesicle breakdown (GVBD) and COC expansion were observed at 4 and 16 h, respectively. The in vivo activity of KN015 was compared with rhFSH by ovary weight gain and ovulation assays. In the former, ovary weight gains in 21-day-old female SD rats, after a single subcutaneous injection of KN015, were compared with those after several injections of rhFSH over a range of doses (n = 8/group). Sera were harvested for estradiol (E2) analysis, and the ovaries were processed for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labeling (TUNEL), RT-PCR and western blot. In the latter, 26-day-old female SD rats (n = 8/group) were injected with different doses of KN015 or rhFSH, and were sacrificed at 24 h after an injection of hCG (20 IU/rat). Moreover, the molecular responses stimulated by KN015 or rhFSH in the ovary were also analyzed through detecting expression of the FSH target genes (Cyp19a1, Fshr and Lhcgr) and phosphatidylinositide 3-kinase (PI3K) pathway activation. MAIN RESULTS AND THE ROLE OF CHANCE KN015 has a molecular weight of 82 kD and its half-life is 84 h in SD rats (10-fold longer than that of rhFSH) and 215 h in Cynomolgus monkeys. The EC50 value of the cAMP induction in CHO cells (KN015 versus rhFSH, 1.84 versus 0.87 nM), COC expansion and oocyte maturation assays showed KN015 had approximately half of rhFSHs activity in vitro. A single dose of KN015 (1.5 pmol/rat, 166.1 ± 19.7 mg, P < 0.01) stimulated significantly larger ovary weight gain than several injections of rhFSH (1.5 pmol/rat, 59.3 ± 28.1 mg, P < 0.01). The serum E2 level in the KN015 group was significantly higher than that in rhFSH group. The number of oocytes obtained by ovulation induction was comparable with or higher in the KN015 group than in the rhFSH group. KN015 was more effective than rhFSH in inducing FSH target genes (Cyp19a1, Fshr, Lhcgr) or activating the PI3K pathway in vivo. Moreover, a single injection of KN015 promoted granulosa cell proliferation and prevented follicle atresia to the same extent as several injections of rhFSH. LIMITATIONS, REASONS FOR CAUTION All assays in this study were operated only in animals and clinical trials are needed to confirm they can be extrapolated to humans. WIDER IMPLICATIONS OF THE FINDINGS KN015 is a valuable alternative to FSH and may have great potential for therapeutic applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by National Basic Research Program of China (2011|CB944504, 2012CB944403) and National Natural Science Foundation of China (81172473, 31371449). The authors have no conflicts of interest to declare.


Oncotarget | 2016

Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions

Xiao-Man Liu; Yongping Zhang; Shu-Yan Ji; Bo-Tai Li; Xuejun Tian; Dali Li; Chao Tong; Heng-Yu Fan

Mitochondrial dynamics change mitochondrial morphological features and numbers as a part of adaptive cellular metabolism, which is vital for most eukaryotic cells and organisms. A disease or even death of an animal can occur if these dynamics are disrupted. Using large-scale genetic screening in fruit flies, we previously found the gene mitoguardin (Miga), which encodes a mitochondrial outer-membrane protein and promotes mitochondrial fusion. Knockout mouse strains were generated for the mammalian Miga homologs Miga1 and Miga2. Miga1/2−/− females show greatly reduced quality of oocytes and early embryos and are subfertile. Mitochondria became clustered in the cytoplasm of oocytes from the germinal-vesicle stage to meiosis II; production of reactive oxygen species increased in mitochondria and caused damage to mitochondrial ultrastructures. Additionally, reduced ATP production, a decreased mitochondrial-DNA copy number, and lower mitochondrial membrane potential were detected in Miga1/2−/− oocytes during meiotic maturation. These changes resulted in low rates of polar-body extrusion during oocyte maturation, reduced developmental potential of the resulting early embryos, and consequently female subfertility. We provide direct evidence that MIGA1/2-regulated mitochondrial dynamics is crucial for mitochondrial functions, ensure oocyte maturation, and maintain the developmental potential.


The EMBO Journal | 2018

DCAF13 promotes pluripotency by negatively regulating SUV39H1 stability during early embryonic development

Yin-Li Zhang; Long-Wen Zhao; Jue Zhang; Rongrong Le; Shu-Yan Ji; Chuan Chen; Yawei Gao; Dali Li; Shaorong Gao; Heng-Yu Fan

Mammalian oocytes and zygotes have the unique ability to reprogram a somatic cell nucleus into a totipotent state. SUV39H1/2‐mediated histone H3 lysine‐9 trimethylation (H3K9me3) is a major barrier to efficient reprogramming. How SUV39H1/2 activities are regulated in early embryos and during generation of induced pluripotent stem cells (iPSCs) remains unclear. Since expression of the CRL4 E3 ubiquitin ligase in oocytes is crucial for female fertility, we analyzed putative CRL4 adaptors (DCAFs) and identified DCAF13 as a novel CRL4 adaptor that is essential for preimplantation embryonic development. Dcaf13 is expressed from eight‐cell to morula stages in both murine and human embryos, and Dcaf13 knockout in mice causes preimplantation‐stage mortality. Dcaf13 knockout embryos are arrested at the eight‐ to sixteen‐cell stage before compaction, and this arrest is accompanied by high levels of H3K9me3. Mechanistically, CRL4‐DCAF13 targets SUV39H1 for polyubiquitination and proteasomal degradation and therefore facilitates H3K9me3 removal and zygotic gene expression. Taken together, CRL4‐DCAF13‐mediated SUV39H1 degradation is an essential step for progressive genome reprogramming during preimplantation embryonic development.


Molecular Human Reproduction | 2017

The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse

Shu-Yan Ji; Xiao-Man Liu; Bo-Tai Li; Yin-Li Zhang; Hongbin Liu; Yu-Chao Zhang; Zi-Jiang Chen; Jun-Ping Liu; Heng-Yu Fan

STUDY QUESTION What is the physiological function of Yes-associated protein-1 (Yap1), a susceptibility gene for polycystic ovary syndrome (PCOS), in ovarian granulosa cells (GCs)? SUMMARY ANSWER Physiologically, steroid sex hormones stimulate follicle growth by activating YAP1; however, the preovulatory inhibition of YAP1 activity in GCs is a prerequisite of LH actions. WHAT IS KNOWN ALREADY PCOS is a common gynecologic and endocrine disease with multiple short and long-term consequences. Many PCOS patients suffer anovulation caused by hyperandrogenism, but its etiology remains unclear. STUDY DESIGN, SIZE, DURATION To study the effect of acute hyperandrogenism on ovulation, we injected pregnant mare serum gonadotrophin (PMSG)-primed (44 h) pubertal mice with dihydrotestosterone (DHT), the major biologically active form of androgen, in a superovulation assay. We investigated if YAP1 is regulated by testosterone and if it is potentially involved in follicle development and ovulation. Cultured primary GCs were subjected to Yap1 depletion by RNA interference and Yap1 overexpression by adenoviral infections. PARTICIPANTS/MATERIALS, SETTING, METHODS Female mice at postnatal day (PD)-21~23 were analyzed to avoid the complexity of ovarian functions associated with estrous cycles and endogenous surges of gonadotropins. Immature mice were injected intraperitoneally with five IU PMSG to stimulate preovulatory follicle development followed 44 h later with five IU hCG to stimulate ovulation. For DHT treatments, female mice at PD23 were injected intraperitoneally with five IU PMSG followed 44 h later with five IU hCG alone (as control) or five IU hCG plus 100 μg DHT, which was dissolved in 0.1 ml DMSO. Methods of gene expression detection used include immunohistochemistry, immunofluorescence, Western blotting and quantitative PCR. More than three biological and technical replicates were included in each experiments. MAIN RESULTS AND THE ROLE OF CHANCE we provide novel evidence in a mouse model that YAP1 is required for proliferation of ovarian GCs, but is down-regulated by LH through the extracellular-regulated kinase-1/2 (ERK1/2) cascade. Acute hyperandrogenism blocks LH actions and causes oligo-ovulation by activating YAP1. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Results shown were obtained only in mouse, and need to be further confirmed in human samples. WIDER IMPLICATIONS OF THE FINDINGS These findings not only elucidated the role of YAP1 in maintaining normal ovarian functions, but also link the YAP1 deregulation to the pathogenesis of PCOS. STUDY FUNDING AND COMPETING INTEREST(S) This study is funded by the National Key Research and Development Program of China (2016YFC1000600 and 2017YFSF1001500) and National Natural Science Foundation of China (31528016, 31371449 and 31671558). The authors have no competing interests.


Cell Death & Differentiation | 2018

Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing

Jue Zhang; Yin-Li Zhang; Long-Wen Zhao; Jing-Xin Guo; Jia-Li Yu; Shu-Yan Ji; Lan-Rui Cao; Song-Ying Zhang; Li Shen; Xiang-Hong Ou; Heng-Yu Fan

During mammalian oocyte growth, chromatin configuration transition from the nonsurrounded nucleolus (NSN) to surrounded nucleolus (SN) type plays a key role in the regulation of gene expression and acquisition of meiotic and developmental competence by the oocyte. Nonetheless, the mechanism underlying chromatin configuration maturation in oocytes is poorly understood. Here we show that nucleolar protein DCAF13 is an important component of the ribosomal RNA (rRNA)-processing complex and is essential for oocyte NSN–SN transition in mice. A conditional knockout of Dcaf13 in oocytes led to the arrest of oocyte development in the NSN configuration, follicular atresia, premature ovarian failure, and female sterility. The DCAF13 deficiency resulted in pre-rRNA accumulation in oocytes, whereas the total mRNA level was not altered. Further exploration showed that DCAF13 participated in the 18S rRNA processing in growing oocytes. The lack of 18S rRNA because of DCAF13 deletion caused a ribosome assembly disorder and then reduced global protein synthesis. DCAF13 interacted with a protein of the core box C/D ribonucleoprotein, fibrillarin, i.e., a factor of early pre-rRNA processing. When fibrillarin was knocked down in the oocytes from primary follicles, follicle development was inhibited as well, indicating that an rRNA processing defect in the oocyte indeed stunts chromatin configuration transition and follicle development. Taken together, these results elucidated the in vivo function of novel nucleolar protein DCAF13 in maintaining mammalian oogenesis.


Journal of Genetics and Genomics | 2015

ERK1/2 Activities Are Dispensable for Oocyte Growth but Are Required for Meiotic Maturation and Pronuclear Formation in Mouse

Yin-Li Zhang; Xiao-Man Liu; Shu-Yan Ji; Qian-Qian Sha; Jue Zhang; Heng-Yu Fan

Collaboration


Dive into the Shu-Yan Ji's collaboration.

Top Co-Authors

Avatar

Heng-Yu Fan

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Yin-Li Zhang

Sir Run Run Shaw Hospital

View shared research outputs
Top Co-Authors

Avatar

Chao Yu

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Man Liu

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Jue Zhang

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Bo-Tai Li

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Dali Li

East China Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge