Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shun-Feng Cheng is active.

Publication


Featured researches published by Shun-Feng Cheng.


Cell Cycle | 2014

Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse

Yan-Min Feng; Gui-Jin Liang; Bo Pan; Xun-Si Qin; Xi-Feng Zhang; Chun-Lei Chen; Lan Li; Shun-Feng Cheng; Massimo De Felici; Wei Shen

A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.


PLOS ONE | 2015

Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

Xun-Si Qin; Mingjun Cao; Fang-Nong Lai; Fan Yang; Wei Ge; Xi-Feng Zhang; Shun-Feng Cheng; Xiao-Feng Sun; Guo-Qing Qin; Wei Shen; Lan Li

Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative stress. The findings from this study clearly demonstrate that curcumin is effective to reduce the dysregulation of cellular redox balance on porcine granulosa cells in vitro and should be further investigated for its protective role against ZEA in animals.


International Journal of Biological Sciences | 2015

DAZ Family Proteins, Key Players for Germ Cell Development.

Xia-Fei Fu; Shun-Feng Cheng; Lin-Qing Wang; Shen Yin; Massimo De Felici; Wei Shen

DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution.


Scientific Reports | 2015

Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration

Wei Ge; Hua-Gang Ma; Shun-Feng Cheng; Yuan-Chao Sun; Li-Lan Sun; Xiao-Feng Sun; Lan Li; Paul W. Dyce; Julang Li; Qinghua Shi; Wei Shen

Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions.


Toxicology and Applied Pharmacology | 2017

The impact of Zearalenone on the meiotic progression and primordial follicle assembly during early oogenesis

Ke-Han Liu; Xiao-Feng Sun; Yan-Zhong Feng; Shun-Feng Cheng; Bo Li; Ya-Peng Li; Wei Shen; Lan Li

&NA; Zearalenone (ZEA) is a mycotoxin produced by fusarium graminearum. It can cause abnormal reproductive function by acting as an environmental estrogen. Research has traditionally focused on acute and chronic injury on mammalian reproductive capacity after ZEA treatment. Little research has been done studying the effects of ZEA exposure on early oogenesis. In this study, we investigate the effects of ZEA exposure on meiotic entry, DNA double‐strand breaks (DSBs), and primordial follicle assembly during murine early oogenesis. The results show that ZEA exposure significantly decreased the percentage of diplotene stage germ cells, and made more germ cells remain at zygotene or pachytene stages. Moreover, the mRNA expression level of meiosis‐related genes was significantly reduced after ZEA treatment. ZEA exposure significantly increased DNA‐DSBs at the diplotene stage. Meanwhile, DNA damage repair genes such as RAD51 and BRCA1 were activated. Furthermore, maternal exposure to ZEA significantly decreased the number of primordial follicles in newborn mouse ovaries. In conclusion, ZEA exposure impairs mouse female germ cell meiotic progression, DNA‐DSBs, and primordial follicle assembly. HighlightsZEA exposure inhibits meiotic progression of female germ cells.ZEA exposure increased DNA double‐strand breaks at the diplotene stage.Maternal exposure to ZEA effects primordial follicle assembly in newborn ovaries.


Theriogenology | 2016

Retinoic acid promotes the proliferation of primordial germ cell–like cells differentiated from mouse skin-derived stem cells in vitro

Hui Tan; Jun-Jie Wang; Shun-Feng Cheng; Wei Ge; Yuan-Chao Sun; Xiao-Feng Sun; Rui Sun; Lan Li; Bo Li; Wei Shen

Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.


Nanotoxicology | 2017

Cutaneous applied nano-ZnO reduce the ability of hair follicle stem cells to differentiate

Wei Ge; Yong Zhao; Fang-Nong Lai; Jing-Cai Liu; Yuan-Chao Sun; Jun-Jie Wang; Shun-Feng Cheng; Xi-Feng Zhang; Li-Lan Sun; Lan Li; Paul W. Dyce; Wei Shen

Abstract The ability of metal oxide nanoparticles to penetrate the skin has aroused a great deal of interest during the past decade due to concerns over the safety of topically applied sunscreens that contain physical UV-resistant metal particles, such as nano-Zinc oxide (nZnO). Previous studies demonstrate that metal oxide nanoparticles accumulate in skin furrows and hair follicles following topical application while little is known about the consequence of these nanoparticles on skin homeostasis. The current investigation tested the effects of nZnO (0.5 mg/day mouse) on hair follicle physiology. Topical application of Vaseline containing nZnO, bulk ZnO (bZnO), or ionized Zn to newborn mice vibrissa pad over a period of 7 consecutive days revealed that nZnO accumulated within hair follicles, and this induced the apoptosis of hair follicle stem cells (HFSCs). In vitro studies also indicated that nZnO exposure caused obvious DNA damage and induced apoptosis in HFSCs. Furthermore, it was found that nZnO exposure perturbed genes associated with HFSC apoptosis, cell communication, and differentiation. HFSCs transplantation assay demonstrated that the potential of HFSCs to differentiate was reduced. This investigation indicates a potential risk of topically applied ZnO nanoparticles on skin homeostasis.


Reproduction, Fertility and Development | 2016

Regulation of primordial follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways

Lin-Qing Wang; Jing-Cai Liu; Chun-Lei Chen; Shun-Feng Cheng; Xiao-Feng Sun; Yong Zhao; Shen Yin; Zhu-Mei Hou; Bo Pan; Cheng Ding; Wei Shen; Xi-Feng Zhang

The growth of oocytes and the development of follicles require certain pathways involved in cell proliferation and survival, such as the phosphatidylinositol 3-kinase (PI3K) pathway and the Notch signalling pathway. The aim of the present study was to investigate the interaction between Notch and the PI3K/AKT signalling pathways and their effects on primordial follicle recruitment. When the Notch pathway was inhibited by L-685,458 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT) in vitro, the expression of genes in the pathway and the percentage of oocytes in growing follicles decreased significantly in mouse ovaries. By 2 days postpartum, ovaries exposed to DAPT, short interference (si) RNA against Notch1 or siRNA against Hairy and enhancer of split-1 (Hes1) had significantly decreased expression of HES1, the target protein of the Notch signalling pathway. In contrast, expression of phosphatase and tensin homologue (Pten), a negative regulator of the AKT signalling pathway, was increased significantly. Co immunoprecipitation (Co-IP) revealed an interaction between HES1 and PTEN. In addition, inhibition of the Notch signalling pathway suppressed AKT phosphorylation and the proliferation of granulosa cells. In conclusion, the recruitment of primordial follicles was affected by the proliferation of granulosa cells and regulation of the interaction between the Notch and PI3K/AKT signalling pathways.


Scientific Reports | 2016

Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat ( Capra hircus )

Fang-Nong Lai; Hong-Li Zhai; Ming Cheng; Jun-Yu Ma; Shun-Feng Cheng; Wei Ge; Jun-Jie Wang; Rui-Qian Zhang; Xue Wang; Lingjiang Min; Jiu-Zhou Song; Wei Shen

Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats.


Cell Death and Disease | 2017

Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro.

Jing-Cai Liu; Fang-Nong Lai; Ling Li; Xiao-Feng Sun; Shun-Feng Cheng; Wei Ge; Yu-Feng Wang; Lan Li; Xi-Feng Zhang; Massimo De Felici; Paul W. Dyce; Wei Shen

Di (2-ethylhexyl) phthalate (DEHP), is the most common member of the class of phthalates that are used as plasticizers and have become common environmental contaminants. A number of studies have shown that DEHP exposure impacts reproductive health in both male and female mammals by acting as an estrogen analog. Here, we investigated the effects of DEHP on meiotic progression of fetal mouse oocytes by using an in vitro model of ovarian tissue culture. The results showed that 10 or 100 μM DEHP exposure inhibited the progression of oocytes throughout meiotic prophase I, specifically from the pachytene to diplotene stages. DEHP possibly impairs the ability to repair DNA double-strand breaks induced by meiotic recombination and as a consequence activates a pachytene check point. At later stages, such defects led to an increased number of oocytes showing apoptotic markers (TUNEL staining, expression of pro-apoptotic genes), resulting in reduced oocyte survival, gap junctions, and follicle assembly in the ovarian tissues. Microarray analysis of ovarian tissues exposed to DEHP showed altered expression of several genes including some involved in apoptosis and gonad development. The expression changes of some genes clustered in cell-cell communication and signal transduction, along with plasma membrane, extracellular matrix and ion channel function classes, were dependent on the DEHP concentration. Together, these results bring new support to the notion that exposure to DEHP during gestation might exert deleterious effects on ovary development, perturbing germ cell meiosis and the expression of genes involved in a wide range of biological processes including ovary development.

Collaboration


Dive into the Shun-Feng Cheng's collaboration.

Top Co-Authors

Avatar

Wei Shen

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lan Li

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Feng Sun

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Ge

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Zhao

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuan-Chao Sun

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xi-Feng Zhang

Wuhan Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Massimo De Felici

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Jun-Jie Wang

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fang-Nong Lai

Qingdao Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge