Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei Ge is active.

Publication


Featured researches published by Wei Ge.


PLOS ONE | 2015

Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

Xun-Si Qin; Mingjun Cao; Fang-Nong Lai; Fan Yang; Wei Ge; Xi-Feng Zhang; Shun-Feng Cheng; Xiao-Feng Sun; Guo-Qing Qin; Wei Shen; Lan Li

Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative stress. The findings from this study clearly demonstrate that curcumin is effective to reduce the dysregulation of cellular redox balance on porcine granulosa cells in vitro and should be further investigated for its protective role against ZEA in animals.


Cell Death and Disease | 2015

In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells

Wei Ge; Chun-Lei Chen; M De Felici; Wei Shen

Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.


Scientific Reports | 2015

Differentiation of early germ cells from human skin-derived stem cells without exogenous gene integration

Wei Ge; Hua-Gang Ma; Shun-Feng Cheng; Yuan-Chao Sun; Li-Lan Sun; Xiao-Feng Sun; Lan Li; Paul W. Dyce; Julang Li; Qinghua Shi; Wei Shen

Infertility has long been a difficult issue for many couples. The successful differentiation of germ cells and live progeny from pluripotent stem cells brings new hope to the couples suffering with infertility. Here we successfully isolated human fetus skin-derived stem cells (hfSDSCs) from fetus skin tissue and demonstrated that hfSDSCs can be differentiated into early human germ cell-like cells (hGCLCs). These cells express human germ cell markers DAZL and VASA. Moreover, these pluripotent stem cell-derived hGCLCs are free of exogenous gene integration. When hfSDSCs were differentiated in porcine follicle fluid (PFF) conditioned media, which has been shown to promote the differentiation of mouse and porcine SDSCs into oocyte-like cells (OLCs), we observed some vesicular structures formed from hfSDSCs. Moreover, when hfSDSCs were cultured with specific conditioned media, we observed punctate and elongated SCP3 staining foci, indicating the initiation of meiosis. Ploidy analysis and fluorescent in situ hybridization (FISH) analysis indicated that a small percentage of putative 1N populations formed from hfSDSCs when compared with positive controls. In conclusion, our data here, for the first time, demonstrated that hfSDSCs possess the differentiation potential into germ lines, and they may differentiate both male and female hGCLCs in vitro under appropriate conditions.


Theriogenology | 2016

Retinoic acid promotes the proliferation of primordial germ cell–like cells differentiated from mouse skin-derived stem cells in vitro

Hui Tan; Jun-Jie Wang; Shun-Feng Cheng; Wei Ge; Yuan-Chao Sun; Xiao-Feng Sun; Rui Sun; Lan Li; Bo Li; Wei Shen

Skin-derived stem cells (SDSCs) have the potential to differentiate into gametes and are a potential resource for research and clinical applications. Sufficient amount of primordial germ cells (PGCs) is an important requirement for successful differentiation of SDSCs into gametes in vitro. Retinoic acid (RA), a vitamin A-derived small lipophilic molecule, promotes the growth of PGCs in vivo; however, the role of RA on the proliferation of PGC-like cells (PGCLCs) derived from SDSCs remains unknown. In this study, SDSCs were induced to differentiate into the embryoid body and cocultured with mouse fibroblasts to form PGCLCs. The proliferation of PGCLCs with the presence of various concentrations of RA was investigated in vitro. Immunofluorescence labeling showed that the 5-Bromo-2-deoxyUridine-positive ratio of PGCLCs was increased after the cells were treated with 5-μM RA, and flow cytometry results showed that the number of cells in the S phase was increased significantly. The messenger RNA expression levels of cell cycle-related genes, CCND1 and CDK2, were also increased. Furthermore, RA effectively promoted the external proliferation of endogenous PGCs when 11.5-days postcoitum fetal mouse genital ridges were cultured in vitro. In conclusion, 5-μM RA promoted the proliferation of SDSCs-derived PGCLCs and endogenous PGCs. Our study will provide a valuable model system for studying the differentiation of stem cells into gametes in vitro.


International Journal of Nanomedicine | 2016

Cytotoxic effects of ZnO nanoparticles on mouse testicular cells

Zhe Han; Qi Yan; Wei Ge; Zhi-Guo Liu; Sangiliyandi Gurunathan; Massiomo De Felici; Wei Shen; Xi-Feng Zhang

Background Nanoscience and nanotechnology are developing rapidly, and the applications of nanoparticles (NPs) have been found in several fields. At present, NPs are widely used in traditional consumer and industrial products, however, the properties and safety of NPs are still unclear and there are concerns about their potential environmental and health effects. The aim of the present study was to investigate the potential toxicity of ZnO NPs on testicular cells using both in vitro and in vivo systems in a mouse experimental model. Methods ZnO NPs with a crystalline size of 70 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The cytotoxicity of the ZnO NPs was examined in vitro on Leydig cell and Sertoli cell lines, and in vivo on the testes of CD1 mice injected with single doses of ZnO NPs. Results ZnO NPs were internalized by Leydig cells and Sertoli cells, and this resulted in cytotoxicity in a time- and dose-dependent manner through the induction of apoptosis. Apoptosis likely occurred as a consequence of DNA damage (detected as γ-H2AX and RAD51 foci) caused by increase in reactive oxygen species associated with loss of mitochondrial membrane potential. In addition, injection of ZnO NPs in male mice caused structural alterations in the seminiferous epithelium and sperm abnormalities. Conclusion These results demonstrate that ZnO NPs have the potential to induce apoptosis in testicular cells likely through DNA damage caused by reactive oxygen species, with possible adverse consequences for spermatogenesis and therefore, male fertility. This suggests that evaluating the potential impacts of engineered NPs is essential prior to their mass production, to address both the environmental and human health concerns and also to develop sustainable and safer nanomaterials.


Nanotoxicology | 2017

Cutaneous applied nano-ZnO reduce the ability of hair follicle stem cells to differentiate

Wei Ge; Yong Zhao; Fang-Nong Lai; Jing-Cai Liu; Yuan-Chao Sun; Jun-Jie Wang; Shun-Feng Cheng; Xi-Feng Zhang; Li-Lan Sun; Lan Li; Paul W. Dyce; Wei Shen

Abstract The ability of metal oxide nanoparticles to penetrate the skin has aroused a great deal of interest during the past decade due to concerns over the safety of topically applied sunscreens that contain physical UV-resistant metal particles, such as nano-Zinc oxide (nZnO). Previous studies demonstrate that metal oxide nanoparticles accumulate in skin furrows and hair follicles following topical application while little is known about the consequence of these nanoparticles on skin homeostasis. The current investigation tested the effects of nZnO (0.5 mg/day mouse) on hair follicle physiology. Topical application of Vaseline containing nZnO, bulk ZnO (bZnO), or ionized Zn to newborn mice vibrissa pad over a period of 7 consecutive days revealed that nZnO accumulated within hair follicles, and this induced the apoptosis of hair follicle stem cells (HFSCs). In vitro studies also indicated that nZnO exposure caused obvious DNA damage and induced apoptosis in HFSCs. Furthermore, it was found that nZnO exposure perturbed genes associated with HFSC apoptosis, cell communication, and differentiation. HFSCs transplantation assay demonstrated that the potential of HFSCs to differentiate was reduced. This investigation indicates a potential risk of topically applied ZnO nanoparticles on skin homeostasis.


PLOS ONE | 2015

Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

Jun-Jie Wang; Yu-Liang Liu; Yuan-Chao Sun; Wei Ge; Yong-Yong Wang; Paul W. Dyce; Rong Hou; Wei Shen

It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.


Scientific Reports | 2016

Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat ( Capra hircus )

Fang-Nong Lai; Hong-Li Zhai; Ming Cheng; Jun-Yu Ma; Shun-Feng Cheng; Wei Ge; Jun-Jie Wang; Rui-Qian Zhang; Xue Wang; Lingjiang Min; Jiu-Zhou Song; Wei Shen

Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats.


PLOS ONE | 2016

Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

Yong Zhao; Lan Li; Lingjiang Min; Lian-Qin Zhu; Qing-Yuan Sun; Xin-Qi Liu; Wei-Dong Zhang; Wei Ge; Jun-Jie Wang; Jing-Cai Liu; Zhi-Hui Hao

Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.


Cell Death and Disease | 2017

Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro.

Jing-Cai Liu; Fang-Nong Lai; Ling Li; Xiao-Feng Sun; Shun-Feng Cheng; Wei Ge; Yu-Feng Wang; Lan Li; Xi-Feng Zhang; Massimo De Felici; Paul W. Dyce; Wei Shen

Di (2-ethylhexyl) phthalate (DEHP), is the most common member of the class of phthalates that are used as plasticizers and have become common environmental contaminants. A number of studies have shown that DEHP exposure impacts reproductive health in both male and female mammals by acting as an estrogen analog. Here, we investigated the effects of DEHP on meiotic progression of fetal mouse oocytes by using an in vitro model of ovarian tissue culture. The results showed that 10 or 100 μM DEHP exposure inhibited the progression of oocytes throughout meiotic prophase I, specifically from the pachytene to diplotene stages. DEHP possibly impairs the ability to repair DNA double-strand breaks induced by meiotic recombination and as a consequence activates a pachytene check point. At later stages, such defects led to an increased number of oocytes showing apoptotic markers (TUNEL staining, expression of pro-apoptotic genes), resulting in reduced oocyte survival, gap junctions, and follicle assembly in the ovarian tissues. Microarray analysis of ovarian tissues exposed to DEHP showed altered expression of several genes including some involved in apoptosis and gonad development. The expression changes of some genes clustered in cell-cell communication and signal transduction, along with plasma membrane, extracellular matrix and ion channel function classes, were dependent on the DEHP concentration. Together, these results bring new support to the notion that exposure to DEHP during gestation might exert deleterious effects on ovary development, perturbing germ cell meiosis and the expression of genes involved in a wide range of biological processes including ovary development.

Collaboration


Dive into the Wei Ge's collaboration.

Top Co-Authors

Avatar

Wei Shen

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lan Li

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shun-Feng Cheng

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Feng Sun

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong Zhao

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jun-Jie Wang

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo De Felici

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Jing-Cai Liu

Qingdao Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuan-Chao Sun

Qingdao Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge