Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shusuke Toden is active.

Publication


Featured researches published by Shusuke Toden.


Cancer Biology & Therapy | 2006

Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats

Shusuke Toden; Anthony R. Bird; David L. Topping; Michael A. Conlon

In previous studies we have shown that high levels of dietary protein (as casein) result in increased levels of colonic DNA damage, measured by the comet assay, and thinning of the colonic mucus layer in rats when dietary resistant starch (RS) is negligible. Feeding RS abolishes these effects. This study aimed to establish whether a diet high in protein as cooked red meat would have similar effects and whether RS was protective. Rats were fed a diet containing 15% or 25% casein, or 25% cooked lean red beef, each with or without the addition of 48% high amylose maize starch (a rich source of RS) for 4 weeks. As expected, high dietary casein caused a 2-fold increase in colonic DNA damage compared with a low casein diet and reduced the thickness of the colonic mucus layer by 41%. High levels of cooked meat caused 26% greater DNA damage than the high casein diet but reduced mucus thickness to a similar degree to casein. Addition of RS to the diet abolished the increase in DNA damage and the loss of colonic mucus thickness induced by either high protein diet. Caecal and faecal short chain fatty acid pools were also increased by inclusion of RS in the diet. Because DNA damage is an early step in the initiation of cancer, these findings suggest that increased DNA damage due to high dietary protein as cooked red meat or casein could increase colorectal cancer risk but inclusion of resistant starch in the diet could significantly reduce that risk.


Cancer Biology & Therapy | 2007

Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids.

Shusuke Toden; Anthony R. Bird; David L. Topping; Michael A. Conlon

Previous studies have shown increased levels of colonocyte DNA damage (as measured by the comet assay) and thinning of the colonic mucus layer in rats fed higher dietary protein as casein or red meat with highly digestible starch. Feeding resistant starch (RS) as high amylose maize starch (HAMS) opposed these changes. However, the dietary level of HAMS was relatively high (48% by weight) so this study was conducted to establish whether HAMS had the same effects at lower dietary levels. Adult male rats were fed a diet containing 25% casein with 0%, 10%, 20%, 30% or 40% HAMS for 4 wk. DNA single strand breaks and 8-hydroxyguanosine levels were measured in isolated colonocytes by the comet assay. As expected, comet tail moment was greatest and the mucus barrier thinnest in rats fed 0% HAMS. DNA damage was reduced and the mucus barrier thickened in a logarithmic dose-dependent manner by HAMS. There was no significant difference in 8-hydroxyguanosine between dietary groups. Caecal and faecal short chain fatty acid (SCFA) pools rose with the increased level of dietary HAMS. DNA damage of colonocytes correlated negatively with caecal SCFA but the strongest correlation was with caecal butyrate, which is consistent with the proposed role of this SCFA in promoting a normal cell phenotype. These data show that HAMS prevents protein-induced colonic DNA damage in a dose-dependent manner. Inclusion of 10% HAMS was found to be sufficient to oppose colonocyte DNA damage, and to increase caecal and faecal SCFA pools.


Nutrition and Cancer | 2005

Resistant Starch Attenuates Colonic DNA Damage Induced by Higher Dietary Protein in Rats

Shusuke Toden; Anthony R. Bird; David L. Topping; Michael A. Conlon

Abstract: Epidemiologic studies suggest that dietary complex carbohydrates are protective against colorectal cancer but dietary protein may increase risk. However, experimental data to support these relationships are scant. We have shown in rats that consumption of a high-protein (25% casein) diet for 4 wk resulted in a twofold increase in damage to colonocyte DNA compared with a low-protein (15% casein) diet. This was associated with thinning of the colonic mucous barrier and increased levels of fecal p-cresol. Addition of resistant starch as a high-amylose maize starch to the diet increased cecal short-chain fatty acid pools and attenuated DNA damage, suggesting protection against genotoxic agents. In humans, this could translate to altered risk of colonic cancer.


Journal of Nutrition | 2012

Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet

Michael A. Conlon; Caroline A Kerr; Christopher S. McSweeney; Robert Dunne; Janet M. Shaw; Seungha Kang; Anthony R. Bird; Matthew K. Morell; Trevor Lockett; Peter L. Molloy; Ahmed Regina; Shusuke Toden; Julie M. Clarke; David L. Topping

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated inversely with total large bowel SCFA, including colonic butyrate concentration (R2 = 0.40; P = 0.009), and positively with colonic ammonia concentration (R2 = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW. The expression of colonic genes associated with the maintenance of genomic integrity (notably Mdm2, Top1, Msh3, Ung, Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene expression differ, possibly due to the presence of other fiber components in HAW.


British Journal of Nutrition | 2007

Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch

Shusuke Toden; Anthony R. Bird; David L. Topping; Michael A. Conlon

Feeding higher levels of dietary animal protein (as casein or red meat) increases colonic DNA damage and thins the colonic mucus barrier in rats. Feeding resistant starch (RS) reverses these changes and increases large bowel SCFA. The present study examined whether high dietary dairy (casein or whey) or plant (soya) proteins had similar adverse effects and whether dietary RS was protective. Adult male rats were fed diets containing 15 or 25 % casein, whey or soya protein with or without 48 % high amylose starch (as a source of RS) for 4 weeks. DNA damage was measured in isolated colonocytes using the comet assay. Higher dietary casein and soya (but not whey) increased colonocyte DNA damage. DNA damage was highest with soya when fed at 15 or 25 % protein without RS. Dietary RS attenuated protein-induced colonocyte DNA damage in all groups but it remained significantly higher in rats fed 25 % soya compared with those fed 15 % protein. Dietary protein level did not affect colonic mucus thickness overall but the barrier was thinner in rats fed high dietary casein. This effect was reversed by feeding RS. Caecal total SCFA and butyrate pools were higher in rats fed RS compared with digestible starch. Caecal and faecal SCFA were unrelated to genetic damage but correlated with mucus thickness. The present data confirm that higher dietary protein affected colonocyte DNA and colonic mucus thickness adversely but that proteins differ in their effects on these indices of colon health. The data show also that these changes were reversed by RS.


Clinical Nutrition | 2012

Colonocyte telomere shortening is greater with dietary red meat than white meat and is attenuated by resistant starch

Nathan J. O’Callaghan; Shusuke Toden; Anthony R. Bird; David L. Topping; Michael Fenech; Michael A. Conlon

BACKGROUND & AIMS Population studies indicate that greater red meat consumption increases colorectal cancer risk while dietary fibre is protective. Previous work in rats showed that diets high in protein, including red meat, increase colonocyte DNA strand breaks and that this effect is attenuated by resistant starches (RS). Telomeres are long hexamer repeats that protect against spontaneous DNA damage which would lead to chromosomal instability. Telomere shortening is associated with greater risk of colorectal cancer. The current study aimed to determine the effects of cooked red and white meat intake on colonocyte telomere length in rats and whether dietary RS modified their effects. METHODS After four weeks of feeding cooked beef or chicken at 15, 25 and 35% of diet with or without RS, colonocyte telomere length was measured. RESULTS Telomere length decreased in proportion to red meat content of the diet. A similar trend was observed in the white meat group. Colonocyte telomere shortening due to increased dietary meat was attenuated by the inclusion of RS. CONCLUSION These data support previous findings of increased colonocyte DNA damage with greater red and white meat intake and also the protective effect of dietary fibre.


Nutrition and Cancer | 2010

Effects of Dietary Beef and Chicken With and Without High Amylose Maize Starch on Blood Malondialdehyde, Interleukins, IGF-I, Insulin, Leptin, MMP-2, and TIMP-2 Concentrations in Rats

Shusuke Toden; Damien P. Belobrajdic; Anthony R. Bird; David L. Topping; Michael A. Conlon

Dietary red and processed meats may increase risk of colorectal cancer (CRC), whereas fiber may be protective. Recently, we demonstrated that dietary beef causes greater colonic DNA strand breakage than equivalent levels of chicken in rats and that resistant starch (RS) as 20% high amylose maize starch (HAMS) attenuated the damage. From that study, we now report measures of circulating factors that may influence CRC initiation or progression including malondialdehyde (MDA), leptin, insulin-like growth factor-I (IGF-I), insulin, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of MMP-2 (TIMP-2), interleukins (IL), and short chain fatty acids. MDA levels were increased by beef diets relative to the chicken diets. Leptin concentrations, which were lower for chicken than beef at the 35% level in the absence of HAMS, were lowered by HAMS. Higher dietary chicken (but not beef) increased IGF-I irrespective of HAMS feeding. Higher levels of chicken resulted in greater insulin concentrations than for beef in rats fed HAMS. Without dietary HAMS, TIMP-2 concentration increased in response to both meats but was highest for chicken. MMP-2 and TIMP-2 concentrations were higher for HAMS diets. IL-1β and IL-12 concentrations were lowered by HAMS feeding. Colonic DNA strand breakage was positively associated with circulating leptin and MDA concentrations as well as tissue MDA concentrations and negatively associated with plasma TIMP-2 concentration. MMP-2 and TIMP-2 positively correlated with hepatic portal butyrate levels but leptin concentrations correlated negatively. These results suggest diets high in meat or RS could influence cancer initiation or progression by changes in circulating levels of hormones and other factors.


Cancer Biology & Therapy | 2014

Butyrylated starch affects colorectal cancer markers beneficially and dose-dependently in genotoxin-treated rats

Shusuke Toden; Trevor Lockett; David L. Topping; Benjamin L. Scherer; Emma-Jane L Watson; Jessica G Southwood; Julie M. Clarke

Population studies suggest that greater dietary fiber intake may lower colorectal cancer (CRC) risk, possibly through the colonic bacterial fermentative production of butyrate. Butyrylated starch delivers butyrate to the colon of humans with potential to reduce CRC risk but high doses may exacerbate risk through promoting epithelial proliferation. Here we report the effects of increasing dietary butyrylated high amylose maize starch (HAMSB) on azoxymethane (AOM) induced distal colonic DNA damage, cell proliferation, mucus layer thickness and apoptosis in rats. Five groups of 15 rats were fed AIN-93G based diets containing 0–40% HAMSB for 4 weeks then injected with (AOM) and killed 6 hours later. Large bowel total SCFA, acetate and butyrate pools and hepatic portal venous plasma total SCFA, acetate and butyrate concentrations were higher with greater HAMSB intake. Distal colonic epithelial apoptotic index and colonic mucus thickness increased, while DNA single strand breaks decreased dose-dependently with greater HAMSB intake. Colonocyte proliferation rates were unaffected by diet. These data suggest that increasing large bowel butyrate may reduce the risk of CRC in a dose dependent manner by enhancing apoptotic surveillance in the colonic epithelium for damaged cells without promoting the risk of tumorigenesis through increased cell proliferation.


Cancer Biology & Therapy | 2010

Can indole-based extracts prevent colorectal cancer via early apoptotic pathways?

Shusuke Toden; Benjamin L. Scherer; Julie M. Clarke

Commentary to: Enhanced acute apoptotic response to azoxymethane-induced DNA damage in the rodent colonic epithelium by Tyrian purple precursors: A potential colorectal cancer chemopreventative Chantel B. Westley, Cassandra M. McIver, Catherine A. Abbott, Richard K. Le Leu and Kirsten Benkendorff


Whole Grains and Health | 2007

Resistant Starch as A Contributor to the Health Benefits of Whole Grains

David L. Topping; Anthony R. Bird; Shusuke Toden; Michael A Conlon; Manny Noakes; Roger A. King; Gulay Mann; Zhong Yi Li; Matthew K. Morell

Collaboration


Dive into the Shusuke Toden's collaboration.

Top Co-Authors

Avatar

David L. Topping

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Bird

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Michael A. Conlon

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Julie M. Clarke

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. Scherer

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Morell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Trevor Lockett

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ahmed Regina

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Caroline A Kerr

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Christopher S. McSweeney

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge