Siân Jones
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siân Jones.
Science | 2008
D. Williams Parsons; Siân Jones; Xiaosong Zhang; Jimmy Lin; Rebecca J. Leary; Philipp Angenendt; Parminder Mankoo; Hannah Carter; I-Mei Siu; Gary L. Gallia; Alessandro Olivi; Roger E. McLendon; B. Ahmed Rasheed; Stephen T. Keir; Tatiana Nikolskaya; Yuri Nikolsky; Dana Busam; Hanna Tekleab; Luis A. Diaz; James Hartigan; Doug Smith; Robert L. Strausberg; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Hai Yan; Gregory J. Riggins; Darell D. Bigner; Rachel Karchin; Nick Papadopoulos; Giovanni Parmigiani
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. To identify the genetic alterations in GBMs, we sequenced 20,661 protein coding genes, determined the presence of amplifications and deletions using high-density oligonucleotide arrays, and performed gene expression analyses using next-generation sequencing technologies in 22 human tumor samples. This comprehensive analysis led to the discovery of a variety of genes that were not known to be altered in GBMs. Most notably, we found recurrent mutations in the active site of isocitrate dehydrogenase 1 (IDH1) in 12% of GBM patients. Mutations in IDH1 occurred in a large fraction of young patients and in most patients with secondary GBMs and were associated with an increase in overall survival. These studies demonstrate the value of unbiased genomic analyses in the characterization of human brain cancer and identify a potentially useful genetic alteration for the classification and targeted therapy of GBMs.
The New England Journal of Medicine | 2009
Hai Yan; D. Williams Parsons; Genglin Jin; Roger E. McLendon; B. Ahmed Rasheed; Weishi Yuan; Ivan Kos; Ines Batinic-Haberle; Siân Jones; Gregory J. Riggins; Henry S. Friedman; Allan H. Friedman; David A. Reardon; James E. Herndon; Kenneth W. Kinzler; Victor E. Velculescu; Bert Vogelstein; Darell D. Bigner
BACKGROUND A recent genomewide mutational analysis of glioblastomas (World Health Organization [WHO] grade IV glioma) revealed somatic mutations of the isocitrate dehydrogenase 1 gene (IDH1) in a fraction of such tumors, most frequently in tumors that were known to have evolved from lower-grade gliomas (secondary glioblastomas). METHODS We determined the sequence of the IDH1 gene and the related IDH2 gene in 445 central nervous system (CNS) tumors and 494 non-CNS tumors. The enzymatic activity of the proteins that were produced from normal and mutant IDH1 and IDH2 genes was determined in cultured glioma cells that were transfected with these genes. RESULTS We identified mutations that affected amino acid 132 of IDH1 in more than 70% of WHO grade II and III astrocytomas and oligodendrogliomas and in glioblastomas that developed from these lower-grade lesions. Tumors without mutations in IDH1 often had mutations affecting the analogous amino acid (R172) of the IDH2 gene. Tumors with IDH1 or IDH2 mutations had distinctive genetic and clinical characteristics, and patients with such tumors had a better outcome than those with wild-type IDH genes. Each of four tested IDH1 and IDH2 mutations reduced the enzymatic activity of the encoded protein. CONCLUSIONS Mutations of NADP(+)-dependent isocitrate dehydrogenases encoded by IDH1 and IDH2 occur in a majority of several types of malignant gliomas.
Science | 2007
Laura D. Wood; D. Williams Parsons; Siân Jones; Jimmy Lin; Tobias Sjöblom; Rebecca J. Leary; Dong Shen; Simina M. Boca; Thomas D. Barber; Janine Ptak; Natalie Silliman; Steve Szabo; Zoltan Dezso; Vadim Ustyanksky; Tatiana Nikolskaya; Yuri Nikolsky; Rachel Karchin; Paul Wilson; Joshua S. Kaminker; Zemin Zhang; Randal Croshaw; Joseph Willis; Dawn Dawson; Michail Shipitsin; James K V Willson; Saraswati Sukumar; Kornelia Polyak; Ben Ho Park; Charit L. Pethiyagoda; P.V. Krishna Pant
Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
Nature | 2010
Shinichi Yachida; Siân Jones; Ivana Bozic; Tibor Antal; Rebecca J. Leary; Baojin Fu; Mihoko Kamiyama; Ralph H. Hruban; James R. Eshleman; Martin A. Nowak; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; Christine A. Iacobuzio-Donahue
Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.
Science | 2010
Siân Jones; Tian Li Wang; Ie Ming Shih; Tsui Lien Mao; Kentaro Nakayama; Richard Roden; Ruth Glas; Dennis J. Slamon; Luis A. Diaz; Bert Vogelstein; Kenneth W. Kinzler; Victor E. Velculescu; Nickolas Papadopoulos
Remodeling Gone Awry The identification of genes that are mutated at high frequency in human tumors can provide important clues to the molecular pathways that drive tumor growth, which in turn can potentially lead to more effective therapies. Jones et al. (p. 228, published online 9 September; see the cover) looked for such mutations in ovarian clear cell carcinoma, a rare but particularly lethal form of ovarian cancer. Of 42 tumors examined, 57% were found to harbor inactivating mutations in ARID1A, a gene coding for a subunit of the SWI/SNF chromatin remodeling complex, which functions as a master regulator of transcription factor action and gene expression. Thus, proteins associated with the epigenetic control of gene expression can contribute to the development of human cancer. Genetic analysis of a rare but aggressive form of ovarian cancer implicates a chromatin remodeling defect in disease development. Ovarian clear cell carcinoma (OCCC) is an aggressive human cancer that is generally resistant to therapy. To explore the genetic origin of OCCC, we determined the exomic sequences of eight tumors after immunoaffinity purification of cancer cells. Through comparative analyses of normal cells from the same patients, we identified four genes that were mutated in at least two tumors. PIK3CA, which encodes a subunit of phosphatidylinositol-3 kinase, and KRAS, which encodes a well-known oncoprotein, had previously been implicated in OCCC. The other two mutated genes were previously unknown to be involved in OCCC: PPP2R1A encodes a regulatory subunit of serine/threonine phosphatase 2, and ARID1A encodes adenine-thymine (AT)–rich interactive domain–containing protein 1A, which participates in chromatin remodeling. The nature and pattern of the mutations suggest that PPP2R1A functions as an oncogene and ARID1A as a tumor-suppressor gene. In a total of 42 OCCCs, 7% had mutations in PPP2R1A and 57% had mutations in ARID1A. These results suggest that aberrant chromatin remodeling contributes to the pathogenesis of OCCC.
Science | 2011
D. Williams Parsons; Meng Li; Xiaosong Zhang; Siân Jones; Rebecca J. Leary; Jimmy Lin; Simina M. Boca; Hannah Carter; Josue Samayoa; Chetan Bettegowda; Gary L. Gallia; George I. Jallo; Zev A. Binder; Yuri Nikolsky; James Hartigan; Doug Smith; Daniela S. Gerhard; Daniel W. Fults; Scott R. VandenBerg; Mitchel S. Berger; Suely Kazue Nagahashi Marie; Sueli Mieko Oba Shinjo; Carlos Clara; Peter C. Phillips; Jane E. Minturn; Jaclyn A. Biegel; Alexander R. Judkins; Adam C. Resnick; Phillip B. Storm; Tom Curran
Genomic analysis of a childhood cancer reveals markedly fewer mutations than what is typically seen in adult cancers. Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Siân Jones; Wei Dong Chen; Giovanni Parmigiani; Frank Diehl; Niko Beerenwinkel; Tibor Antal; Arne Traulsen; Martin A. Nowak; Christopher Siegel; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; Joseph Willis; Sanford D. Markowitz
We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes ≈17 years for a large benign tumor to evolve into an advanced cancer but <2 years for cells within that cancer to acquire the ability to metastasize; (ii) it requires few, if any, selective events to transform a highly invasive cancer cell into one with the capacity to metastasize; (iii) the process of cell culture ex vivo does not introduce new clonal mutations into colorectal tumor cell populations; and (iv) the rates at which point mutations develop in advanced cancers are similar to those of normal cells. These results have important implications for understanding human tumor pathogenesis, particularly those associated with metastasis.
Science | 2009
Siân Jones; Ralph H. Hruban; Mihoko Kamiyama; Michael Borges; Xiaosong Zhang; D. Williams Parsons; Jimmy Lin; Emily Palmisano; Kieran Brune; Elizabeth M. Jaffee; Christine A. Iacobuzio-Donahue; Anirban Maitra; Giovanni Parmigiani; Scott E. Kern; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; James R. Eshleman; Michael Goggins; Alison P. Klein
Through complete sequencing of the protein-coding genes in a patient with familial pancreatic cancer, we identified a germline, truncating mutation in PALB2 that appeared responsible for this patients predisposition to the disease. Analysis of 96 additional patients with familial pancreatic cancer revealed three distinct protein-truncating mutations, thereby validating the role of PALB2 as a susceptibility gene for pancreatic cancer. PALB2 mutations have been previously reported in patients with familial breast cancer, and the PALB2 protein is a binding partner for BRCA2. These results illustrate that complete, unbiased sequencing of protein-coding genes can lead to the identification of a gene responsible for a hereditary disease.
American Journal of Pathology | 2009
Kuan-Ting Kuo; Tsui Lien Mao; Siân Jones; Emanuela Veras; A. Ayhan; Tian Li Wang; Ruth Glas; Dennis J. Slamon; Victor E. Velculescu; Robert J. Kuman; Ie Ming Shih
Ovarian clear cell carcinoma (CCC) is one of the most malignant types of ovarian carcinomas, particularly at advanced stages. Unlike the more common type of ovarian cancer, high-grade serous carcinoma, ovarian CCC is often resistant to platinum-based chemotherapy, and therefore an effective treatment for this tumor type at advanced stages is urgently needed. In this study, we analyzed 97 ovarian CCCs for sequence mutations in KRAS, BRAF, PIK3CA, TP53, PTEN, and CTNNB1 as these mutations frequently occur in other major types of ovarian carcinomas. The samples included 18 CCCs for which affinity-purified tumor cells from fresh specimens were available, 69 microdissected tumors from paraffin tissues, and 10 tumor cell lines. Sequence mutations of PIK3CA, TP53, KRAS, PTEN, CTNNB1, and BRAF occurred in 33%, 15%, 7%, 5%, 3%, and 1% of CCC cases, respectively. Sequence analysis of PIK3CA in 28 affinity-purified CCCs and CCC cell lines showed a mutation frequency of 46%. Samples with PIK3CA mutations showed intense phosphorylated AKT immunoreactivity. These findings demonstrate that ovarian CCCs have a high frequency of activating PIK3CA mutations. We therefore suggest that the use of PIK3CA-targeting drugs may offer a more effective therapeutic approach compared with current chemotherapeutic agents for patients with advanced-stage and recurrent CCC.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Rebecca J. Leary; Jimmy Lin; Jordan M. Cummins; Simina M. Boca; Laura D. Wood; D. Williams Parsons; Siân Jones; Tobias Sjöblom; Ben Ho Park; Ramon Parsons; Joseph Willis; Dawn Dawson; James K V Willson; Tatiana Nikolskaya; Yuri Nikolsky; Levy Kopelovich; Nick Papadopoulos; Len A. Pennacchio; Tian Li Wang; Sanford D. Markowitz; Giovanni Parmigiani; Kenneth W. Kinzler; Bert Vogelstein; Victor E. Velculescu
We have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations included those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that could prove useful for cancer diagnosis and therapy.