Siddhartha Kumar Bhaumik
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siddhartha Kumar Bhaumik.
Science | 2017
Taia T. Wang; Jaturong Sewatanon; Matthew J. Memoli; Jens Wrammert; Stylianos Bournazos; Siddhartha Kumar Bhaumik; Benjamin A. Pinsky; Kulkanya Chokephaibulkit; Nattawat Onlamoon; Kovit Pattanapanyasat; Jeffery K. Taubenberger; Rafi Ahmed; Jeffrey V. Ravetch
A rare ability to enhance dengue virus disease In some cases, secondary infections of dengue virus can be extremely serious and result in plasma leakage, thrombocytopenia, and hemorrhagic disease. This phenomenon has been attributed to antibody-dependent enhancement. Wang et al. show that a specific subclass of antibody, IgG1, which lacks fucosyl residues on the Fc segment of the heavy chain of the immunoglobulin, is elevated in patients with severe secondary dengue disease. These non-neutralizing antibodies bind activating Fc receptors and appear to cross-react with platelet antigens to cause platelet depletion, contributing to thrombocytopenia. Science, this issue p. 395 Immunoglobulin subclass IgG1, which lacks fucosyl residues, is implicated in severe dengue disease during secondary infections. Dengue virus (DENV) infection in the presence of reactive, non-neutralizing immunoglobulin G (IgG) (RNNIg) is the greatest risk factor for dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Progression to DHF/DSS is attributed to antibody-dependent enhancement (ADE); however, because only a fraction of infections occurring in the presence of RNNIg advance to DHF/DSS, the presence of RNNIg alone cannot account for disease severity. We discovered that DHF/DSS patients respond to infection by producing IgGs with enhanced affinity for the activating Fc receptor FcγRIIIA due to afucosylated Fc glycans and IgG1 subclass. RNNIg enriched for afucosylated IgG1 triggered platelet reduction in vivo and was a significant risk factor for thrombocytopenia. Thus, therapeutics and vaccines restricting production of afucosylated, IgG1 RNNIg during infection may prevent ADE of DENV disease.
PLOS Pathogens | 2012
Subir Karmakar; Siddhartha Kumar Bhaumik; Joydeep Paul; Tripti De
NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR) can be modulated by activated invariant Natural Killer T (iNKT) cells. The terminal β-(1–4)-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the β-(1–4)-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL) antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic.
The Journal of Neuroscience | 2014
Dianer Yang; Yu Yo Sun; Siddhartha Kumar Bhaumik; Yikun Li; Jessica M. Baumann; Xiaoyi Lin; Yujin Zhang; Shang Hsuan Lin; R. Scott Dunn; Chia Yang Liu; Feng Shiun Shie; Yi-Hsuan Lee; Marsha Wills-Karp; Claire A. Chougnet; Suhas G. Kallapur; Ian P. Lewkowich; Diana M. Lindquist; Kaja Murali-Krishna; Chia Yi Kuan
Intrauterine infection (chorioamnionitis) aggravates neonatal hypoxic–ischemic (HI) brain injury, but the mechanisms linking systemic inflammation to the CNS damage remain uncertain. Here we report evidence for brain influx of T-helper 17 (TH17)-like lymphocytes to coordinate neuroinflammatory responses in lipopolysaccharide (LPS)-sensitized HI injury in neonates. We found that both infants with histological chorioamnionitis and rat pups challenged by LPS/HI have elevated expression of the interleukin-23 (IL-23) receptor, a marker of early TH17 lymphocytes, in the peripheral blood mononuclear cells. Post-LPS/HI administration of FTY720 (fingolimod), a sphingosine-1-phosphate receptor agonist that blocks lymphocyte trafficking, mitigated the influx of leukocytes through the choroid plexus and acute induction of nuclear factor-κB signaling in the brain. Subsequently, the FTY720 treatment led to attenuated blood–brain barrier damage, fewer cluster of differentiation 4-positive, IL-17A-positive T-cells in the brain, less proinflammatory cytokine, and better preservation of growth and white matter functions. The FTY720 treatment also provided dose-dependent reduction of brain atrophy, rescuing >90% of LPS/HI-induced brain tissue loss. Interestingly, FTY720 neither opposed pure-HI brain injury nor directly inhibited microglia in both in vivo and in vitro models, highlighting its unique mechanism against inflammation-sensitized HI injury. Together, these results suggest that the dual hit of systemic inflammation and neonatal HI injury triggers early onset of the TH17/IL-17-mediated immunity, which causes severe brain destruction but responds remarkably to the therapeutic blockade of lymphocyte trafficking.
Journal of Virology | 2014
Raveendra R. Kulkarni; Mohammed Ata Ur Rasheed; Siddhartha Kumar Bhaumik; Priya Ranjan; Weiping Cao; Carl W. Davis; Krishna Marisetti; Sunil Thomas; Shivaprakash Gangappa; Suryaprakash Sambhara; Kaja Murali-Krishna
ABSTRACT Pattern recognition receptors (PRR) sense certain molecular patterns uniquely expressed by pathogens. Retinoic-acid-inducible gene I (RIG-I) is a cytosolic PRR that senses viral nucleic acids and induces innate immune activation and secretion of type I interferons (IFNs). Here, using influenza vaccine antigens, we investigated the consequences of activating the RIG-I pathway for antigen-specific adaptive immune responses. We found that mice immunized with influenza vaccine antigens coadministered with 5′ppp-double-stranded RNA (dsRNA), a RIG-I ligand, developed robust levels of hemagglutination-inhibiting antibodies, enhanced germinal center reaction, and T follicular helper cell responses. In addition, RIG-I activation enhanced antibody affinity maturation and plasma cell responses in the draining lymph nodes, spleen, and bone marrow and conferred protective immunity against virus challenge. Importantly, activation of the RIG-I pathway was able to reduce the antigen requirement by 10- to 100-fold in inducing optimal influenza-specific cellular and humoral responses, including protective immunity. The effects induced by 5′ppp-dsRNA were significantly dependent on type I IFN and IPS-1 (an adapter protein downstream of the RIG-I pathway) signaling but were independent of the MyD88- and TLR3-mediated pathways. Our results show that activation of the RIG-I-like receptor pathway programs the innate immunity to achieve qualitatively and quantitatively enhanced protective cellular adaptive immune responses even at low antigen doses, and this indicates the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines. IMPORTANCE The recently discovered RNA helicase family of RIG-I-like receptors (RLRs) is a critical component of host defense mechanisms responsible for detecting viruses and triggering innate antiviral cytokines that help control viral replication and dissemination. In this study, we show that the RLR pathway can be effectively exploited to enhance adaptive immunity and protective immune memory against viral infection. Our results show that activation of the RIG-I pathway along with influenza vaccination programs the innate immunity to induce qualitatively and quantitatively superior protective adaptive immunity against pandemic influenza viruses. More importantly, RIG-I activation at the time of vaccination allows induction of robust adaptive responses even at low vaccine antigen doses. These results highlight the potential utility of exploiting the RIG-I pathway to enhance viral-vaccine-specific immunity and have broader implications for designing better vaccines in general.
Mbio | 2016
Robert C. Kauffman; Taufiqur Rahman Bhuiyan; Rie Nakajima; Leslie M. Mayo-Smith; Rasheduzzaman Rashu; Mohammad Rubel Hoq; Fahima Chowdhury; Ashraful I. Khan; Atiqur Rahman; Siddhartha Kumar Bhaumik; Levelle Harris; Justin T O'Neal; Jessica F. Trost; Nur Haq Alam; Algis Jasinskas; Emmanuel Y. Dotsey; Meagan Kelly; Richelle C. Charles; Peng Xu; Pavol Kováč; Stephen B. Calderwood; Edward T. Ryan; Phillip L. Felgner; Firdausi Qadri; Jens Wrammert; Jason B. Harris
ABSTRACT We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs) generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT) or lipopolysaccharide (LPS). Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera. IMPORTANCE Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts. Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts.
Science Translational Medicine | 2018
Maud Mavigner; Jessica Raper; Zsofia Kovacs-Balint; Sanjeev Gumber; Justin T. O’Neal; Siddhartha Kumar Bhaumik; Xiaodong Zhang; Jakob Habib; Cameron Mattingly; Circe E. McDonald; Victoria Avanzato; Mark W. Burke; Diogo M. Magnani; Varian K. Bailey; David I. Watkins; Thomas H. Vanderford; Damien A. Fair; Eric Earl; Eric Feczko; Martin Styner; Sherrie Jean; Joyce Cohen; Guido Silvestri; R. Paul Johnson; David H. O’Connor; Jens Wrammert; Mehul S. Suthar; Mar M. Sanchez; Maria C. Alvarado; Ann Chahroudi
Zika virus infection early after birth has deleterious effects on the developing brain and long-term behavioral changes in rhesus macaques. Postnatal perturbation by Zika virus Much of the concern surrounding Zika virus infections focuses on fetuses infected in utero. Mavigner et al. reasoned that this neurotropic virus may have deleterious effects even after birth, so they set up a postnatal infection model to investigate. They found that infant rhesus macaques infected with Zika virus also had peripheral and central nervous system pathology. Longitudinal magnetic resonance imaging studies revealed that macaques that had been infected with Zika virus had structural and functional abnormalities and also altered emotional responses. These differences persisted months after the virus had been cleared. Although the work involved a small number of animals, their results suggest that infants and young children exposed to Zika virus should undergo more than just routine monitoring. The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.
PLOS Neglected Tropical Diseases | 2018
Viswanathan Ramasamy; Upasana Arora; Rahul Shukla; Ankur Poddar; Rajgokul K. Shanmugam; Laura J. White; Melissa M. Mattocks; Rajendra Raut; Ashiya Perween; Poornima Tyagi; Aravinda M. de Silva; Siddhartha Kumar Bhaumik; Murali Krishna Kaja; Francois Villinger; Rafi Ahmed; Robert E. Johnston; Sathyamangalam Swaminathan; Navin Khanna
Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate.
Cell and Tissue Research | 2017
Raveendra R. Kulkarni; Alexander Ian Villanueva; Leah R. Read; Jennifer T. Brisbin; Siddhartha Kumar Bhaumik; Jonathan LaMarre; Kaja Murali-Krishna; Shayan Sharif
Invariant natural killer T (iNKT) cells play important roles in antimicrobial defense and immune-regulation. We have previously shown that iNKT cells express certain toll-like receptors (TLR), and that TLR co-stimulation of iNKT cells in the presence of suboptimal concentrations of T cell receptor (TCR) agonists enhances cellular activation. In the present study, we investigated the regulatory effects of CpG oligonucleotides in mouse primary hepatic and splenic iNKT cells and in DN32.D3 iNKT cells. We show that CpG treatment of iNKT cells in the presence of higher concentrations of TCR agonists (α-GalCer or anti-CD3 mAb) results in the up-regulation of TLR9 in iNKT cells with a concurrent reduction in their cellular activation, as assessed by their production of IL-2, IL-4 and IFN-γ compared with controls. CpG-mediated down-regulation of iNKT cell activation has been found to depend, at least in part, on signaling by MyD88, a critical adapter moiety downstream of TLR9 signaling. Mechanistically, iNKT cells treated with CpG in the presence of TCR agonists show inhibition of MAPK signaling as determined by the levels of ERK1/2 and p38 MAPKs. Furthermore, CpG treatment leads to an increased induction of phosphatases, DUSP1 and SHP-1, that seem to impede MAPK and TCR signaling, resulting in the negative regulation of iNKT cell activation. Our findings therefore suggest a novel regulatory role for CpG in iNKT cells in the mediation of a negative feedback mechanism to control overactive iNKT cell responses and hence to avoid undesirable excessive immunopathology.
The Journal of Infectious Diseases | 2018
Erica L Johnson; Sahithi Boggavarapu; Elan S. Johnson; Asim A Lal; Parth Agrawal; Siddhartha Kumar Bhaumik; Kaja Murali-Krishna; Rana Chakraborty
Several co-pathogens that pose threats to the fetus during gestation, including human cytomegalovirus (HCMV), may also contribute to mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1). Within endemic settings, associations between maternal HCMV viral load and increased incidence of MTCT of HIV-1 are documented; however, the mechanisms that promote transmission are poorly characterized. Here we demonstrate that HCMV coinfection enhances susceptibility and viral replication of HIV-1 in placental macrophages (Hofbauer cells) in vitro. Consistent with enhanced viral susceptibility, HCMV exposure upregulates CCR5 and CD80 expression on Hofbauer cells. HCMV also significantly induces type I interferon (IFN), proinflammatory cytokines, and antiviral gene expression. Interestingly, we found that HCMV diminishes type I IFN-mediated phosphorylation of STAT2. Collectively, our data suggest that HCMV-induced activation, local inflammation, and antagonism of type I IFN responses in placental Hofbauer cells promote in utero transmission of HIV-1.
Experimental Parasitology | 2017
Manoj Kumar Singh; Siddhartha Kumar Bhaumik; Subir Karmakar; Joydeep Paul; Sudeshna Sawoo; Hemanta K. Majumder; Amit Roy