Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Colleoni is active.

Publication


Featured researches published by Silvia Colleoni.


Theriogenology | 2003

Bovine embryo technologies

Cesare Galli; Roberto Duchi; Gabriella Crotti; Paola Turini; Nunzia Ponderato; Silvia Colleoni; Irina Lagutina; Giovanna Lazzari

Embryo technologies are a combination of assisted reproduction, cellular and molecular biology and genomic techniques. Their classical use in animal breeding has been to increase the number of superior genotypes but with advancement in biotechnology and genomics they have become a tool for transgenesis and genotyping. Multiple ovulation and embryo transfer (MOET) has been well established for many years and still accounts for the majority of the embryos produced worldwide. However, no progress has been made in the last 20 years to increase the number of transferable embryos and to reduce the side effects on the reproductive performance of the donors. In vitro embryo production (IVP) is a newer and more flexible approach, although it is technically more demanding and requires specific laboratory expertise and equipment that are most important for the quality of the embryos produced. Somatic cell cloning is a rapidly developing area and a very valuable technique to copy superior genotypes and to produce or copy transgenic animals. More knowledge in oocyte and embryo biology is expected to shed new light on the early developmental events, including epigenetic changes and their long lasting effect on the newborn.Embryo technologies are here to stay and their use will increase as advances in the understanding of the mechanisms governing basic biological processes are made.


Veterinary Research Communications | 2009

Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor

Silvia Colleoni; Emanuela Bottani; Irene Tessaro; Gaetano Mari; Barbara Merlo; Noemi Romagnoli; Alessandro Spadari; Cesare Galli; Giovanna Lazzari

Mesenchymal stem cells (MSC) are increasingly used as therapeutical aid for the orthopaedic injuries in the horse. MSC populate different tissues but the most commonly used for clinical purposes are isolated from bone marrow or adipose tissue. The first objective of this study was to investigate if the donor animal, the tissue of origin and the technique of isolation could influence the number of MSC available for transplantation after a short-term expansion. The second aim was to devise a culture system capable of increasing MSC lifespan and we tested the effect of basic fibroblast growth factor (bFGF). Results indicate that MSC can be efficiently isolated from both sources and supplementation of bFGF enhances proliferation rate maintaining differentiation potential. In addition, this study shows that collection, expansion and storage of frozen MSC can be performed for later therapeutic use.


Cloning and Stem Cells | 2008

Transgene Expression of Green Fluorescent Protein and Germ Line Transmission in Cloned Pigs Derived from In Vitro Transfected Adult Fibroblasts

Dario Brunetti; Andrea Perota; Irina Lagutina; Silvia Colleoni; Roberto Duchi; Fiorella Calabrese; Michela Seveso; Emanuele Cozzi; Giovanna Lazzari; Franco Lucchini; Cesare Galli

The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pigs organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.


Stem Cells | 2006

Direct Derivation of Neural Rosettes from Cloned Bovine Blastocysts: A Model of Early Neurulation Events and Neural Crest Specification In Vitro

Giovanna Lazzari; Silvia Colleoni; Serena G. Giannelli; Dario Brunetti; Elena Colombo; Irina Lagutina; Cesare Galli; Vania Broccoli

Embryonic stem cells differentiate into neuroectodermal cells under specific culture conditions. In primates, these cells are organized into rosettes expressing Pax6 and Sox1 and are responsive to inductive signals such as Sonic hedgehog (Shh) and retinoic acid. However, direct derivation of organized neuroectoderm in vitro from preimplantation mammalian embryos has never been reported. Here, we show that bovine inner cell masses from nuclear transfer and fertilized embryos, grown on feeders in serum‐free medium, form polarized rosette structures expressing nestin, Pax6, Pax7, Sox1, and Otx2 and exhibiting interkinetic nuclear migration activity and cell junction distribution as in the developing neural tube. After in vitro expansion, neural rosettes give rise to p75‐positive neural crest precursor cell lines capable of long‐term proliferation and differentiation in autonomic and sensory peripheral neurons, glial cells, melanocytes, smooth muscle cells, and chondrocytes, recapitulating in vitro the unique plasticity of the neural crest lineage. Challenging the rosette dorsal fate by early exposure to Shh induces the expression of ventral markers Isl1, Nkx2.2, and Nkx6.1 and differentiation of mature astrocytes and neurons of central nervous system ventral identity, demonstrating appropriate response to inductive signals. All together, these findings indicate that neural rosettes directly derived from cloned and fertilized bovine embryos represent an in vitro model of early neural specification and differentiation events. Moreover, this study provides a source of highly proliferative neural crest precursor cell lines of wide differentiation potential for cell therapy and tissue engineering applications.


Theriogenology | 2010

Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species.

Giovanna Lazzari; Silvia Colleoni; Irina Lagutina; Gabriella Crotti; Paola Turini; Irene Tessaro; Dario Brunetti; Roberto Duchi; Cesare Galli

The culture of early embryos in the surrogate xeno-oviduct was first developed in the early 1950s to allow transport of embryos at long distances. Later, it was applied to the study of culture requirements of the early embryo especially that of bovine origin. In this article, we review the data available on the culture of in vitro-matured and in vitro-fertilized embryos of Bos taurus, Sus scrofa, Equus caballus and Ovis aries in the surrogate sheep oviduct compared with data on in vitro culture in different media. Short-term and long-term cellular and molecular effects are described mainly for the bovine species where more extensive use of this technique has been made. A comparison with in vitro culture in various conditions and species indicate that embryos cultured in the sheep oviduct have close similarities to totally in vivo-derived embryos. The data provided demonstrate that the technique of in vivo culture in the surrogate sheep oviduct is versatile and allows a high rate of embryonic development in all species examined.


Toxicological Sciences | 2011

Development of a Neural Teratogenicity Test Based on Human Embryonic Stem Cells: Response to Retinoic Acid Exposure

Silvia Colleoni; Cesare Galli; John Antony Gaspar; Kesavan Meganathan; Smita Jagtap; Jürgen Hescheler; Agapios Sachinidis; Giovanna Lazzari

The aim of this study was the development of an alternative testing method based on human embryonic stem cells for prenatal developmental toxicity with particular emphasis on early neural development. To this purpose, we designed an in vitro protocol based on the generation of neural rosettes, representing the in vitro counterpart of the developing neural plate and neural tube, and we challenged this complex cell model with retinoic acid (RA), a well-known teratogenic agent. The cells were exposed to different concentrations of RA during the process of rosettes formation. Morphological and molecular parameters were evaluated in treated as compared with untreated cells to detect both cytotoxicity and specific neural toxicity. Transcriptomic analysis was performed with microarray Affymetrix platform and validated by quantitative real-time PCR for genes relevant to early neural development such as HoxA1, HoxA3, HoxB1, HoxB4, FoxA2, FoxC1, Otx2, and Pax7. The results obtained demonstrated that neural rosette forming cells respond to RA with clear concentration-dependent morphological, and gene expression changes remarkably similar to those induced in vivo, in the developing neural tube, by RA exposure. This strict correspondence indicates that the neural rosette protocol described is capable of detecting specific teratogenic mechanisms causing perturbations of early neural development and therefore represents a promising alternative test for human prenatal developmental toxicity.


BMC Research Notes | 2009

Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen-thawed in vitro blastocysts

Katrien Smits; Karen Goossens; Ann Van Soom; Jan Govaere; Maarten Hoogewijs; E. Vanhaesebrouck; Cesare Galli; Silvia Colleoni; Jo Vandesompele; Luc Peelman

BackgroundApplication of reverse transcription quantitative real-time polymerase chain reaction is very well suited to reveal differences in gene expression between in vivo and in vitro produced embryos. Ultimately, this may lead to optimized equine assisted reproductive techniques. However, for a correct interpretation of the real-time PCR results, all data must be normalized, which is most reliably achieved by calculating the geometric mean of the most stable reference genes. In this study a set of reliable reference genes was identified for equine in vivo and fresh and frozen-thawed in vitro embryos.FindingsThe expression stability of 8 candidate reference genes (ACTB, GAPDH, H2A/I, HPRT1, RPL32, SDHA, TUBA4A, UBC) was determined in 3 populations of equine blastocysts (fresh in vivo, fresh and frozen-thawed in vitro embryos). Application of geNorm indicated UBC, GAPDH, ACTB and HPRT1 as the most stable genes in the in vivo embryos and UBC, RPL32, GAPDH and ACTB in both in vitro populations. When in vivo and in vitro embryos were combined, UBC, ACTB, RPL32 and GAPDH were found to be the most stable. SDHA and H2A/I appeared to be highly regulated.ConclusionsBased on these results, the geometric mean of UBC, ACTB, RPL32 and GAPDH is to be recommended for accurate normalization of quantitative real-time PCR data in equine in vivo and in vitro produced blastocysts.


Reproduction | 2009

Protective effects of the cumulus-corona radiata complex during vitrification of horse oocytes.

T. Tharasanit; Silvia Colleoni; Cesare Galli; Ben Colenbrander; T.A.E. Stout

Vitrifying oocytes is a potentially valuable means of preserving the female germ line, but significantly compromises oocyte developmental competence. This study examined the hypothesis that the cumulus complex protects the oocyte during vitrification. Vitrified-warmed immature cumulus oocyte complexes (COCs) were labelled with a plasma membrane impermeant DNA marker (ethidium homodimer-1) to examine the percentage and location of dead cumulus cells, and to investigate the effect of the proportion of dead cells (+1,+2 or +3) on the success of in vitro maturation (IVM). Further, oocytes were labelled for connexin-43 or injected with Lucifer yellow dye to determine whether the integrity of the gap junctions between an oocyte and its cumulus was compromised by vitrification. Finally, the effect of denuding immature and mature oocytes on their ability to withstand vitrification was examined. Cryopreserving immature COCs increased the number of dead cumulus cells (13 vs 2.6% for controls; P<0.05). However, an increased proportion of dead cumulus cells did not affect post-warming maturation rates (approximately 30% MII) presumably because dead cells were located at the periphery of the cumulus mass and cumulus-oocyte gap junction communication was not disrupted. Moreover, cumulus removal prior to IVM or vitrification indicated that while the cumulus does protect immature oocytes during vitrification it does so by mechanisms other than support during maturation. Cumulus presence was also found to protect mature equine oocytes against vitrification-induced damage since cumulus-enclosed MII oocytes preserved their meiotic spindle quality better during vitrification than denuded oocytes (38.1 vs 3.1% normal spindles; P<0.05).


Reproduction in Domestic Animals | 2012

Somatic cell nuclear transfer and transgenesis in large animals: current and future insights

Cesare Galli; Irina Lagutina; Andrea Perota; Silvia Colleoni; Roberto Duchi; Franco Lucchini; Giovanna Lazzari

Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.


Experimental Cell Research | 2010

Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

Silvia Colleoni; Cesare Galli; Serena G. Giannelli; Marie Therese Armentero; Fabio Blandini; Vania Broccoli; Giovanna Lazzari

In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

Collaboration


Dive into the Silvia Colleoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge