Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Gatti is active.

Publication


Featured researches published by Silvia Gatti.


Nature Reviews Neuroscience | 2010

Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease.

Katharina Wulff; Silvia Gatti; Joseph G. Wettstein; Russell G. Foster

Sleep and circadian rhythm disruption are frequently observed in patients with psychiatric disorders and neurodegenerative disease. The abnormal sleep that is experienced by these patients is largely assumed to be the product of medication or some other influence that is not well defined. However, normal brain function and the generation of sleep are linked by common neurotransmitter systems and regulatory pathways. Disruption of sleep alters sleep–wake timing, destabilizes physiology and promotes a range of pathologies (from cognitive to metabolic defects) that are rarely considered to be associated with abnormal sleep. We propose that brain disorders and abnormal sleep have a common mechanistic origin and that many co-morbid pathologies that are found in brain disease arise from a destabilization of sleep mechanisms. The stabilization of sleep may be a means by which to reduce the symptoms of — and permit early intervention of — psychiatric and neurodegenerative disease.


Journal of Pharmacology and Experimental Therapeutics | 2005

Fenobam: A Clinically Validated Nonbenzodiazepine Anxiolytic Is a Potent, Selective, and Noncompetitive mGlu5 Receptor Antagonist with Inverse Agonist Activity

Richard Hugh Philip Porter; Georg Jaeschke; Will Spooren; Theresa M. Ballard; Bernd Büttelmann; Sabine Kolczewski; Jens-Uwe Peters; Eric Prinssen; Jürgen Wichmann; Eric Vieira; Andreas Mühlemann; Silvia Gatti; Vincent Mutel; Pari Malherbe

Fenobam [N-(3-chlorophenyl)-N′-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC50 = 58 ± 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC50 = 84 ± 13 nM. [3H]Fenobam bound to rat and human recombinant receptors with Kd values of 54 ± 6 and 31 ± 4 nM, respectively. MPEP inhibited [3H]fenobam binding to human mGlu5 receptors with a Ki value of 6.7 ± 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.


Cellular Immunology | 1992

N-Acetylcysteine and glutathione as inhibitors of tumor necrosis factor production

Platon Peristeris; Burton D. Clark; Silvia Gatti; Raffaella Faggioni; Alberto Mantovani; Manuela Mengozzi; Scott F. Orencole; Marina Sironi; Pietro Ghezzi

TNF is a major mediator in the pathogenesis of endotoxic shock, and its inhibition has a protective effect in various animal models of sepsis or endotoxin (lipopolysaccharide, LPS) toxicity. LPS treatment also induces an oxidative damage mediated by increased production of reactive oxygen intermediates. N-Acetylcysteine (NAC) is an antioxidant and a precursor of the synthesis of glutathione (GSH) and was reported to protect against LPS toxicity and LPS-induced pulmonary edema. In this study we investigated the effect of NAC on TNF production and LPS lethality in mice. The results indicated that oral administration of NAC protects against LPS toxicity and inhibits the increase in serum TNF levels in LPS-treated mice. The inhibition was not confined to the released form of TNF, since NAC also inhibited LPS-induced spleen-associated TNF. On the other hand, the inhibitor of GSH synthesis, DL-buthionine-(SR)-sulfoximine (BSO), had the opposite effect of potentiating LPS-induced TNF production, and this was associated with a decrease in liver GSH levels. Repletion of liver GSH with NAC reversed this effect. NAC was also active in inhibiting TNF production and hepatotoxicity in mice treated with LPS in association with a sensitizing dose of Actinomycin D. These data indicate that GSH can be an endogenous modulator of TNF production in vivo. On the other hand, NAC pretreatment did not inhibit other effects of LPS, particularly induction of serum IL-6, spleen IL-1 alpha, and corticosterone, in the same experimental model, suggesting that the observed effect could be specific for TNF.


Current Biology | 1999

FEVER : LINKS WITH AN ANCIENT RECEPTOR

Charles A. Dinarello; Silvia Gatti; Tamas Bartfai

Recent advances have provided evidence that prostaglandin E2 mediates the generation of fever in response to interleukin-1 or lipopolysaccharide and have reinforced the similarities of signaling downstream of these two pyrogens.


Journal of Pharmacology and Experimental Therapeutics | 2011

CTEP: A Novel, Potent, Long-Acting, and Orally Bioavailable Metabotropic Glutamate Receptor 5 Inhibitor

Lothar Lindemann; Georg Jaeschke; Aubin Michalon; Eric Vieira; Michael Honer; Will Spooren; Richard Porter; Thomas Hartung; Sabine Kolczewski; Bernd Büttelmann; Christophe Flament; Catherine Diener; Christophe Fischer; Silvia Gatti; Eric Prinssen; Neil Parrott; Gerhard Hoffmann; Joseph G. Wettstein

The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinsons disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [3H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED50 equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition.


Cell | 2013

The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock

Aarti Jagannath; Rachel Butler; Sofia I.H. Godinho; Yvonne Couch; Laurence A. Brown; Sridhar R. Vasudevan; Kevin C. Flanagan; Daniel C. Anthony; Grant C. Churchill; Matthew J.A. Wood; Guido Steiner; Martin Ebeling; Markus Hossbach; Joseph G. Wettstein; Giles E. Duffield; Silvia Gatti; Mark W. Hankins; Russell G. Foster; Stuart N. Peirson

Summary Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms.


British Journal of Pharmacology | 2011

Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators

Linda Lundström; C Bissantz; Jennifer Beck; Joseph G. Wettstein; Thomas Johannes Woltering; Jürgen Wichmann; Silvia Gatti

BACKGROUND AND PURPOSE Altered glutamatergic neurotransmission is linked to several neurological and psychiatric disorders. Metabotropic glutamate receptor 2 (mGlu2) plays an important role on the presynaptic control of glutamate release and negative allosteric modulators (NAMs) acting on mGlu2/3 receptors are under assessment for their potential as antidepressants, neurogenics and cognitive enhancers. Two new potent mGlu2/3 NAMs, RO4988546 and RO5488608, are described in this study and the allosteric binding site in the transmembrane (TM) domain of mGlu2 is characterized.


Neuropharmacology | 2008

Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis

Francesco Fazio; Serena Notartomaso; Eleonora Aronica; Marianna Storto; Giuseppe Battaglia; E. Vieira; Silvia Gatti; Valeria Bruno; Francesca Biagioni; Roberto Gradini; Ferdinando Nicoletti; R. Di Marco

Recent evidence suggests that changes in the expression of membrane receptors/ion channels in cerebellar Purkinje cells contribute to the onset of cerebellar motor symptoms in patients with multiple sclerosis (MS). We examined the expression of group-I metabotropic glutamate receptors (mGlu1 and mGlu5 receptors) in the cerebellum of mice developing experimental autoimmune encephalomyelitis (EAE) and in autoptic cerebellar samples of MS patients. EAE was induced in mice by immunization with the 35-55 fragment of MOG (myelin oligodendrocyte glycoprotein). EAE mice showed a progressive loss of mGlu1a receptors in the cerebellum, associated with an increased expression of mGlu5 receptors. These changes were restricted to Purkinje cells and their dendritic arborization, as shown by immunohistochemistry. A reduced expression of mGlu1a receptors in cerebellar Purkinje cells was also found in 7 of 9 MS patients. In addition, a light/moderate to very strong mGlu5 receptor immunoreactivity was detected in Purkinje cells of 8 MS patients, but was always absent in non-MS control patients. In EAE mice, an acute treatment with the mGlu1 receptor enhancer, 9H-xanthene-9-carboxylic acid (4-trifluoromethyl-oxazol-2-yl)-amide (RO0711401), significantly improved motor coordination, whereas treatment with the mGlu5 receptor antagonists, 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and 6-methyl-2-(phenylazo)-3-pyridinol (SIB-1757), had no effect. We conclude that mGlu1 receptor enhancers improve motor symptoms associated with EAE and might be helpful as symptomatic drugs in patients with MS.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives : Part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists

Thomas Johannes Woltering; Juergen Wichmann; Erwin Goetschi; Frédéric Knoflach; Theresa M. Ballard; Joerg Huwyler; Silvia Gatti

This study completes a series of papers devoted to the characterization of the non-competitive mGluR2/3 antagonist properties of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives with particular emphasis on derivatizations compatible with brain penetration and in vivo activity. Especially the compounds bearing a para-pyridine consistently showed in vivo activity in rat behavioral models after oral administration, for example, blockade of the mGluR2/3 agonist LY354740-induced hypoactivity and improvement of a working memory deficit induced either by LY354740 or scopolamine in the delayed match to position task (DMTP). Moreover, combination studies with a cholinesterase inhibitor show apparent synergistic effects on working memory impairment induced by scopolamine.


Nature Communications | 2015

The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition

Maria Lidia Mignogna; Maila Giannandrea; Antonia Gurgone; Francesca Fanelli; Francesco Raimondi; Lisa Mapelli; Silvia Bassani; Huaqiang Fang; Massimo Alessio; Maria Passafaro; Silvia Gatti; José Antonio Rodríguez Esteban; Richard L. Huganir; Patrizia D'Adamo

RAB39B is a member of the RAB family of small GTPases that controls intracellular vesicular trafficking in a compartment-specific manner. Mutations in the RAB39B gene cause intellectual disability comorbid with autism spectrum disorder and epilepsy, but the impact of RAB39B loss of function on synaptic activity is largely unexplained. Here we show that protein interacting with C-kinase 1 (PICK1) is a downstream effector of GTP-bound RAB39B and that RAB39B-PICK1 controls trafficking from the endoplasmic reticulum to the Golgi and, hence, surface expression of GluA2, a subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). The role of AMPARs in synaptic transmission varies depending on the combination of subunits (GluA1, GluA2 and GluA3) they incorporate. RAB39B downregulation in mouse hippocampal neurons skews AMPAR composition towards non GluA2-containing Ca2+-permeable forms and thereby alters synaptic activity, specifically in hippocampal neurons. We posit that the resulting alteration in synaptic function underlies cognitive dysfunction in RAB39B-related disorders.

Collaboration


Dive into the Silvia Gatti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamas Bartfai

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge