Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvio Pulwer is active.

Publication


Featured researches published by Silvio Pulwer.


IEEE Photonics Technology Letters | 2015

Novel Ring Resonator Combining Strong Field Confinement With High Optical Quality Factor

Patrick Steglich; Christian Mai; David Stolarek; Stefan Lischke; Sebastian Kupijai; Claus Villringer; Silvio Pulwer; Friedhelm Heinrich; Joachim Bauer; Stefan Meister; Dieter Knoll; Mauro Casalboni; Sigurd Schrader

Slot waveguide ring resonators appear promising candidates for several applications in silicon photonics. Strong field confinement, high device tunability, and low power consumption are beneficial properties compared with strip waveguides. Slot waveguide ring resonators suffer, however, from rather low optical quality factors due to optical losses. This letter proposes and experimentally demonstrates a novel concept based on a partially slotted ring and a strip-to-slot mode converter. An exceptional high quality factor of ~105 has been measured.


Archive | 2016

Design Optimization of Silicon-on-Insulator Slot-Waveguides for Electro-optical Modulators and Biosensors

Patrick Steglich; Claus Villringer; Silvio Pulwer; Mauro Casalboni; Sigurd Schrader

An approach for design optimization of the geometrical parameters of silicon-on-insulator slot-waveguides for electro-optical modulators and biosensors is presented. Theoretical investigations of field confinement factors and effective nonlinear areas for different slot-waveguide structures are critically analyzed and thoroughly calculated. With our simulation results we explain the high efficiency of electro-optical modulators and the enhanced sensitivity of biosensors compared to strip-waveguides. The influence on the effective refractive index, field confinement factor, and effective nonlinear area of the slot width and the silicon rail width were investigated.


Proceedings of SPIE | 2016

Partially slotted silicon ring resonator covered with electro-optical polymer

Patrick Steglich; Christian Mai; David Stolarek; Stefan Lischke; Sebastian Kupijai; Claus Villringer; Silvio Pulwer; Friedhelm Heinrich; Joachim Bauer; Stefan Meister; Dieter Knoll; Mauro Casalboni; Sigurd Schrader

In this work, we present for the first time a partially slotted silicon ring resonator (PSRR) covered with an electro-optical polymer (Poly[(methyl methacrylate)-co-(Disperse Red 1 acrylate)]). The PSRR takes advantage of both a highly efficient vertical slot waveguide based phase shifter and a low loss strip waveguide in a single ring. The device is realized on 200 mm silicon-on-insulator wafers using 248 nm DUV lithography and covered with the electro-optic polymer in a post process. This silicon-organic hybrid ring resonator has a small footprint, high optical quality factor, and high DC device tunability. A quality factor of up to 105 and a DC device tunability of about 700 pm/V is experimentally demonstrated in the wavelength range of 1540 nm to 1590 nm. Further, we compare our results with state-of-the-art silicon-organic hybrid devices by determining the poling efficiency. It is demonstrated that the active PSRR is a promising candidate for efficient optical switches and tunable filters.


IEEE Sensors Journal | 2017

Hybrid-Waveguide Ring Resonator for Biochemical Sensing

Patrick Steglich; Claus Villringer; Silvio Pulwer; Friedhelm Heinrich; Joachim Bauer; Birgit Dietzel; Christian Mai; Andreas Mai; Mauro Casalboni; Sigurd Schrader

This paper proposes a hybrid-waveguide ring resonator for on-chip biochemical sensing. Consisting of a low-loss strip-waveguide and a highly sensitive slot-waveguide integrated in a silicon photonic platform, it combines advantages of both waveguide types. In this way, it provides the unique feature to increase the sensitivity while maintaining low optical losses. Thus, this resonator structure may represent a promising alternative approach for future integrated biochemical sensing applications. This is suggested by a theoretical analysis, involving numerical simulation of the hybrid-waveguide ring resonator and an optimization of the slot-waveguide structure with regard to light-analyte-interaction. It is demonstrated that the hybrid-waveguide concept may overcome limitations in terms of overall resonator sensitivity, which is described by a figure of merit, connecting the optical losses with the resonator sensitivity.


Photons Plus Ultrasound: Imaging and Sensing 2018 | 2018

Development of tunable Fabry-Pérot polymer film sensors for parellelised photoacoustic signal acquisition (Conference Presentation)

Claus Villringer; Taravat Saeb Gilani; Sara Gehauf; Clemens Wiedenhöft; Patrick Steglich; Silvio Pulwer; Sigurd Schrader; Jan Laufer; Maria Richetta

Fabry-Perot (FP) polymer film sensors exhibit small element sizes, high acoustic sensitivity, transparency and flat frequency response to enable high resolution 3D photoacoustic (PA) imaging in backward mode. However, conventional raster scan interrogation can result in slow data acquisition (several min for 3D images) compared to parallelized piezoelectric detector arrays. To address this limitation, parallelization using a camera-based readout of FP sensors is investigated. This approach requires the optical thickness of the polymer spacer to be sufficiently uniform over the scan area to obtain high acoustic sensitivity for all active elements. Since the deposition of passive polymer layers with sufficient homogeneity of thickness is challenging, the use of electro-optically (EO) or piezoelectric (PE) tunable polymer film spacers is investigated. The spacers are sandwiched between two dielectric mirrors and transparent electrodes to form an FP sensor. In this work, spin coated guest-host systems consisting of EO chromophores (2-methyl-4-nitroaniline) embedded in a PMMA matrix, and thermally evaporated PE film spacers (PVDF) were examined. Both systems were electrically poled using a corona discharge. The optical transfer function, the transmission spectrum of the excitation passband from 600 nm to 1100 nm and the tuning range of the FP sensors were determined. Furthermore, the detection of PA waves was demonstrated. Tunable FP sensors in conjunction with camera-based interrogation techniques have the potential to provide 3D image acquisition times on the order of seconds.


Optical Measurement Systems for Industrial Inspection X | 2017

Very high aspect ratio through silicon via reflectometry

Joachim Bauer; Friedhelm Heinrich; O. Fursenko; S. Marschmeyer; A. Bluemich; Silvio Pulwer; Patrick Steglich; Claus Villringer; Andreas Mai; Sigurd Schrader

Through Silicon Via (TSV) technology is a key feature of new 3D integration of circuits by creation of interconnections using vias, which go through the silicon wafer. Typically, the highly-selective Bosch Si etch process, characterized by a high etch rate and high aspect ratio and forming of scallops on the sidewalls is used. As presented in this paper, we have developed an experimental setup and a respective evaluation algorithm for the control and monitoring of very high aspect ratio TSV profiles by spectroscopic reflectometry. For this purpose square via arrays with lateral dimension from 3 to 10 μm were fabricated by a Bosch etch process and analyzed by our setup. By exploiting interference and diffraction effects of waves reflected from the top and bottom surfaces as well as from the side walls of the TSV patterns, the measurements provided etch depths, CD values and scallop periods. The results were compared with data obtained by a commercial wafer metrology tool. Aspect ratios of up to 35:1 were safely evaluable by our setup.


Proceedings of SPIE | 2016

Triangulation-based 3D surveying borescope

Silvio Pulwer; Patrick Steglich; Claus Villringer; Joachim Bauer; M. Burger; M. Franz; K. Grieshober; F. Wirth; J. Blondeau; J. Rautenberg; S. Mouti; Sigurd Schrader

In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of ± 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.


Proceedings of SPIE | 2016

On the origin and removal of interference patterns in coated multimode fibres

Yazmin Padilla Michel; Silvio Pulwer; Pouneh Saffari; Viachaslau Ksianzou; Sigurd Schrader

In this study, we present the experimental investigations on interference patterns, such as those already reported in VIMOS-IFU, and up to now no appropriate explanation has been presented. These interference patterns are produced in multimode fibres coated with acrylate or polyimide, which is the preferred coating material for the fibres used in IFUs. Our experiments show that, under specific conditions, cladding modes interact with the coating and produce interference. Our results show that the conditions at which the fibre is held during data acquisition has an impact in the output spectrum. Altering the positioning conditions of the fibre leads to the changes into the interference pattern, therefore, fibres should be carefully manipulated in order to minimise this potential problem and improve the performance of these instruments. Finally we present a simple way of predicting and modelling this interference produced from the visible to the near infrared spectra. This model can be included in the data reduction pipeline in order to remove the interference patterns. These results should be of interest for the optimisation of the data reduction pipelines of instruments using optical fibres. Considering these results will benefit innovations and developments of high performance fibre systems.


Optics Letters | 2018

Quadratic electro-optic effect in silicon-organic hybrid slot-waveguides

Patrick Steglich; Christian Mai; Claus Villringer; Silvio Pulwer; Mauro Casalboni; Sigurd Schrader; Andreas Mai


Archive | 2016

Advanced Nanophotonics: Silicon-Organic Hybrid Technology

Patrick Steglich; Claus Villringer; Silvio Pulwer; Joachim Bauer; Friedhelm Heinrich; Mauro Casalboni; Sigurd Schrader

Collaboration


Dive into the Silvio Pulwer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mauro Casalboni

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge