Simon Dearden
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon Dearden.
Journal of Thoracic Oncology | 2014
Jean-Yves Douillard; Gyula Ostoros; Manuel Cobo; Tudor Ciuleanu; Rebecca Cole; Gael McWalter; Jill Walker; Simon Dearden; Alan Webster; Tsveta Milenkova; Rose McCormack
Introduction: In the phase IV, open-label, single-arm study NCT01203917, first-line gefitinib 250 mg/d was effective and well tolerated in Caucasian patients with epidermal growth factor receptor (EGFR) mutation-positive non–small-cell lung cancer (previously published). Here, we report EGFR mutation analyses of plasma-derived, circulating-free tumor DNA. Methods: Mandatory tumor and duplicate plasma (1 and 2) baseline samples were collected (all screened patients; n = 1060). Preplanned, exploratory analyses included EGFR mutation (and subtype) status of tumor versus plasma and between plasma samples. Post hoc, exploratory analyses included efficacy by tumor and plasma EGFR mutation (and subtype) status. Results: Available baseline tumor samples were 1033 of 1060 (118 positive of 859 mutation status known; mutation frequency, 13.7%). Available plasma 1 samples were 803 of 1060 (82 positive of 784 mutation status known; mutation frequency, 10.5%). Mutation status concordance between 652 matched tumor and plasma 1 samples was 94.3% (95% confidence interval [CI], 92.3–96.0) (comparable for mutation subtypes); test sensitivity was 65.7% (95% CI, 55.8–74.7); and test specificity was 99.8% (95% CI, 99.0–100.0). Twelve patients of unknown tumor mutation status were subsequently identified as plasma mutation-positive. Available plasma 2 samples were 803 of 1060 (65 positive of 224 mutation status-evaluable and -known). Mutation status concordance between 224 matched duplicate plasma 1 and 2 samples was 96.9% (95% CI, 93.7–98.7). Objective response rates are as follows: mutation-positive tumor, 70% (95% CI, 60.5–77.7); mutation-positive tumor and plasma 1, 76.9% (95% CI, 65.4–85.5); and mutation-positive tumor and mutation-negative plasma 1, 59.5% (95% CI, 43.5–73.7). Median progression-free survival (months) was 9.7 (95% CI, 8.5–11.0; 61 events) for mutation-positive tumor and 10.2 (95% CI, 8.5–12.5; 36 events) for mutation-positive tumor and plasma 1. Conclusion: The high concordance, specificity, and sensitivity demonstrate that EGFR mutation status can be accurately assessed using circulating-free tumor DNA. Although encouraging and suggesting that plasma is a suitable substitute for mutation analysis, tumor tissue should remain the preferred sample type when available.
Journal of Clinical Pathology | 2013
Gillian Ellison; Guanshan Zhu; Alexandros Moulis; Simon Dearden; Georgina Speake; Rose McCormack
Aims Activating mutations in the gene encoding epidermal growth factor receptor (EGFR) can confer sensitivity to EGFR tyrosine kinase inhibitors such as gefitinib in patients with advanced non-small-cell lung cancer. Testing for mutations in EGFR is therefore an important step in the treatment-decision pathway. We reviewed reported methods for EGFR mutation testing in patients with lung cancer, initially focusing on studies involving standard tumour tissue samples. We also evaluated data on the use of cytology samples in order to determine their suitability for EGFR mutation analysis. Methods We searched the MEDLINE database for studies reporting on EGFR mutation testing methods in patients with lung cancer. Results Various methods have been investigated as potential alternatives to the historical standard for EGFR mutation testing, direct DNA sequencing. Many of these are targeted methods that specifically detect the most common EGFR mutations. The development of targeted mutation testing methods and commercially available test kits has enabled sensitive, rapid and robust analysis of clinical samples. The use of screening methods, subsequent to sample micro dissection, has also ensured that identification of more rare, uncommon mutations is now feasible. Cytology samples including fine needle aspirate and pleural effusion can be used successfully to determine EGFR mutation status provided that sensitive testing methods are employed. Conclusions Several different testing methods offer a more sensitive alternative to direct sequencing for the detection of common EGFR mutations. Evidence published to date suggests cytology samples are viable alternatives for mutation testing when tumour tissue samples are not available.
Annals of Oncology | 2013
Simon Dearden; James Stevens; Yi-Long Wu; David P. Blowers
Background Meta-analyses were conducted to characterize patterns of mutation incidence in non small-cell lung cancer (NSCLC). Design Nine genes with the most complete published mutation coincidence data were evaluated. One meta-analysis generated a ‘mutMap’ to visually represent mutation coincidence by ethnicity (Western/Asian) and histology (adenocarcinoma [ADC] or squamous cell carcinoma). Another meta-analysis evaluated incidence of individual mutations. Extended analyses explored incidence of EGFR and KRAS mutations by ethnicity, histology, and smoking status. Results Genes evaluated were TP53, EGFR, KRAS, LKB1, EML4-ALK, PTEN, BRAF, PIK3CA, and ErbB2. The mutMap highlighted mutation coincidences occurring in ≥5% of patients, including TP53 with KRAS or EGFR mutations in patients with ADC, and TP53 with LKB1 mutation in Western patients. TP53 was the most frequently mutated gene overall. Frequencies of TP53, EGFR, KRAS, LKB1, PTEN, and BRAF mutations were influenced by histology and/or ethnicity. Although EGFR mutations were most frequent in patients with ADC and never/light smokers from Asia, and KRAS mutations were most frequent in patients with ADC and ever/heavy smokers from Western countries, both were detected outside these subgroups. Conclusions Potential molecular pathology segments of NSCLC were identified. Further studies of mutations in NSCLC are warranted to facilitate more specific diagnoses and guide treatment.
Lung Cancer | 2015
Kenneth S. Thress; Roz Brant; T. Hedley Carr; Simon Dearden; Suzanne Jenkins; Helen Brown; Tracey Hammett; Mireille Cantarini; J. Carl Barrett
OBJECTIVES To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). RESULTS Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. CONCLUSION The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program.
British Journal of Cancer | 2009
Ruth Board; Gillian Ellison; Maria Orr; K R Kemsley; G McWalter; L Y Blockley; Simon Dearden; Charles Morris; Malcolm R Ranson; Mireille Cantarini; Caroline Dive; Adina Hughes
Background:This study investigated the potential clinical utility of circulating free DNA (cfDNA) as a source of BRAF mutation detection in patients enrolled into a phase II study of AZD6244, a specific MEK1/2 inhibitor, in patients with advanced melanoma.Methods:BRAF mutations were detected using Amplification Refractory Mutation System allele-specific PCR. BRAF mutation status was assessed in serum-derived cfDNA from 126 patients enrolled into the study and from 94 matched tumour samples.Results:Of 94 tumour samples, 45 (47.9%) were found to be BRAF mutation positive (BRAF+). Serum-derived cfDNA was BRAF+ in 33 of 126 (26.2%) samples, including in five samples for which tumour data were unavailable. Of BRAF+ tumours, 25 of 45 (55.6%) were BRAF+ in cfDNA. In three cases in which the tumour was negative, cfDNA was BRAF+. Progression-free survival (PFS) of patients with BRAF+ tumour and cfDNA was not significantly different compared with tumour BRAF+ but cfDNA BRAF-negative patients, indicating that cfDNA BRAF detection is not associated with poorer prognosis on PFS in stage III/IV advanced melanoma.Conclusions:These data demonstrate the feasibility of BRAF mutation detection in cfDNA of patients with advanced melanoma. Future studies should aim to incorporate BRAF mutation testing in cfDNA to further validate this biomarker for patient selection.
Journal of Experimental & Clinical Cancer Research | 2015
James Sherwood; Simon Dearden; Marianne Ratcliffe; Jill Walker
Increased understanding of the genetic aetiology of advanced non-small-cell lung cancer (aNSCLC) has facilitated personalised therapies that target specific molecular aberrations associated with the disease. Biopsy samples for mutation testing may be taken from primary or metastatic sites, depending on which sample is most accessible, and upon differing diagnostic practices between territories. However, the mutation status concordance between primary tumours and corresponding metastases is the subject of debate. This review aims to ascertain whether molecular diagnostic testing of either the primary or metastatic tumours is equally suitable to determine patient eligibility for targeted therapies. A literature search was performed to identify articles reporting studies of mutations in matched primary and metastatic aNSCLC tumour samples. Clinical results of mutation status concordance between matched primary and metastatic tumour samples from patients with aNSCLC were collated. Articles included in this review (N =26) all reported mutation status data from matched primary and metastatic tumour samples obtained from adult patients with aNSCLC. Generally, substantial concordance was observed between primary and metastatic tumours in terms of EGFR, KRAS, BRAF, p16 and p53 mutations. However, some level of discordance was seen in most studies; mutation testing methodologies appeared to play a key role in this, along with underlying tumour heterogeneity. Substantial concordance in mutation status observed between primary and metastatic tumour sites suggests that diagnostic testing of either tumour type may be suitable to determine a patient’s eligibility for personalised therapies. As with all diagnostic testing, highly sensitive and appropriately validated mutation analysis methodologies are desirable to ensure accuracy. Additional work is also required to define how much discordance is clinically significant given natural tumour heterogeneity. The ability of both primary and metastatic tumour sites to accurately reflect the tumour mutation status will allow more patients to receive therapies personalised to their disease.
Virchows Archiv | 2013
Roy Milner; Helen Wombwell; Sonia Eckersley; Donna Barnes; Juli Warwicker; Erica Van Dorp; Simon Dearden; Glen Hughes; Chris Harbron; Bob Wellings; Darren Hodgson; Chris Womack; Neil Gray; Alan Lau; Mark J. O’Connor; Catherine Marsden; Alexander J. Kvist
BRCA1 protein measurement has previously been evaluated as a potential diagnostic marker without reaching a conclusive recommendation. In this study, we applied current best practice in antibody validation to further characterize MS110, a widely used antibody targeting BRCA1. Antibody specificity was investigated using different biochemical validation techniques. We found that BRCA1 could not be reliably detected using immunoprecipitation and Western blot in endogenously expressing cells. We used immunohistochemistry on formalin-fixed paraffin-embedded cell pellets to establish compatibility with formalin-fixed paraffin-embedded samples. We demonstrated that in transfected cells and cell lines with known genetic BRCA1 status, MS110 successfully detected BRCA1 giving the expected level of staining in immunohistochemistry. Following this, we investigated the use of BRCA1 protein measurement by immunohistochemistry in a cohort of triple negative breast and serous ovarian tumour samples to explore the use of BRCA1 protein measurement by immunohistochemistry for patient stratification. Using MS110 in repeated standardized experiments, on serial sections from a panel of patient samples, results demonstrated considerable run-to-run variability. We concluded that in formalin-fixed tissue samples, MS110 does detect BRCA1; however, using standard methodologies, BRCA1 expression levels in tissue samples is incompatible with the use of this protein as a statistically robust patient selection marker in immunohistochemistry. These results demonstrate the need for further development to deliver BRCA1 protein quantification by immunohistochemistry as a patient stratification marker.
Clinical Cancer Research | 2014
Marie Cumberbatch; Ximing Tang; Garry Beran; Sonia Eckersley; Xin Wang; Rebecca Ellston; Simon Dearden; Sabina Cosulich; Paul D. Smith; Carmen Behrens; Edward S. Kim; Xinying Su; Shuqiong Fan; Neil Gray; David P. Blowers; Ignacio I. Wistuba; Chris Womack
Purpose: The phosphoinositide 3-kinase (PI3K) pathway is a major oncogenic signaling pathway and an attractive target for therapeutic intervention. Signaling through the PI3K pathway is moderated by the tumor suppressor PTEN, which is deficient or mutated in many human cancers. Molecular characterization of the PI3K signaling network has not been well defined in lung cancer; in particular, the role of PI3Kβ and its relation to PTEN in non–small cell lung cancer NSCLC remain unclear. Experimental Design: Antibodies directed against PI3Kβ and PTEN were validated and used to examine, by immunohistochemistry, expression in 240 NSCLC resection tissues [tissue microarray (TMA) set 1]. Preliminary observations were extended to an independent set of tissues (TMA set 2) comprising 820 NSCLC patient samples analyzed in a separate laboratory applying the same validated antibodies and staining protocols. The staining intensities for PI3Kβ and PTEN were explored and colocalization of these markers in individual tumor cores were correlated. Results: PI3Kβ expression was elevated significantly in squamous cell carcinomas (SCC) compared with adenocarcinomas. In contrast, PTEN loss was greater in SCC than in adenocarcinoma. Detailed correlative analyses of individual patient samples revealed a significantly greater proportion of SCC in TMA set 1 with higher PI3Kβ and lower PTEN expression when compared with adenocarcinoma. These findings were reinforced following independent analyses of TMA set 2. Conclusions: We identify for the first time a subset of NSCLC more prevalent in SCC, with elevated expression of PI3Kβ accompanied by a reduction/loss of PTEN, for whom selective PI3Kβ inhibitors may be predicted to achieve greater clinical benefit. Clin Cancer Res; 20(3); 595–603. ©2013 AACR.
European Journal of Cancer | 2013
John Craig Smith; Laura Brooks; Paulo M. Hoff; Gael McWalter; Simon Dearden; Shethah Morgan; David Wilson; Jane Robertson; Juliane M. Jürgensmeier
PURPOSE The prognostic potential of KRAS mutations in advanced colorectal cancer (CRC) patients and the impact of KRAS mutation status on the effectiveness of chemotherapy or vascular endothelial growth factor (VEGF) signalling inhibitor therapy remain unclear. KRAS mutation status was evaluated retrospectively as a potential prognostic/predictive marker of clinical outcomes using tumour samples from patients with metastatic CRC receiving cediranib or placebo plus FOLFOX/XELOX in a Phase III trial (HORIZON II; NCT00399035). METHODS KRAS codon 12 and 13 mutation analyses were performed using a commercially available, allele-specific, amplification refractory mutation system (ARMS)-based polymerase chain reaction (PCR) assay. Retrospective analyses of progression-free survival (PFS) and overall survival (OS) according to KRAS mutation status were performed for patients randomised to cediranib 20mg or placebo. RESULTS KRAS status was determined in 599/1076 patients (cediranib 20mg, n=285/502; cediranib 30 mg, n=110/216; placebo, n=204/358). Baseline characteristics were similar across KRAS mutant (n=258; 24.0%), wild-type (n=341; 31.7%) and status unknown (n=477; 44.3%) groups. There was a trend towards improved PFS and OS in the wild-type versus mutant subgroups independent of treatment (cediranib 20 mg and placebo: PFS hazard ratio (HR)=0.85 [median PFS: wild-type=8.5 months; mutant=8.3 months]; OS HR=0.71 [median OS: wild-type=20.9 months; mutant=16.9 months]). Treatment effects were similar between KRAS subgroups for cediranib 20mg versus placebo (PFS: wild-type HR=0.78, mutant HR=0.82; OS: wild-type HR=0.92, mutant HR=1.01). CONCLUSION Data from this large randomised Phase III study show that KRAS codon 12/13 mutations have negative prognostic value in metastatic CRC patients receiving treatment with FOLFOX/XELOX, but KRAS mutation status is not predictive of treatment benefit with cediranib, using PFS or OS.
Lung Cancer | 2017
Simon Dearden; Helen Brown; Suzanne Jenkins; Kenneth S. Thress; Mireille Cantarini; Rebecca Cole; Malcolm R Ranson; Pasi A. Jänne
OBJECTIVES Reliable epidermal growth factor receptor (EGFR) mutation testing techniques are required to identify eligible patients with EGFR mutation/T790M positive advanced non-small cell lung cancer (NSCLC), for treatment with osimertinib (AZD9291), an oral, potent, irreversible EGFR tyrosine kinase inhibitor (TKI) selective for EGFR-TKI-sensitizing and T790M resistance mutations over wild-type EGFR. There is no current consensus regarding the best method to detect EGFR T790M mutations. The aim of this study was to describe the concordance between local testing, which used a variety of methods, and central testing, using the cobas® EGFR Mutation Test, for EGFR-sensitizing mutations and the T790M resistance mutation. MATERIALS AND METHODS Tumor samples were obtained from all patients screened for inclusion onto the osimertinib Phase I expansion component of the AURA Phase I/II study (NCT01802632). Samples underwent central laboratory testing for EGFR-sensitizing mutations and T790M resistance mutation using the cobas® EGFR Mutation Test. Results were compared with local laboratory test results, based on other testing methodologies including Sanger sequencing, therascreen®, PNAClamp™, and Sequenom MassARRAY®. RESULTS Central laboratory testing was successful in 99% of samples passing histopathology review and testing success rates were comparable across the three central laboratories. Concordance between central and local testing for common sensitizing mutations was high (>98%) and concordance for the T790M mutation was also high (>90%). Tumor heterogeneity, along with other technical factors may have influenced this result. CONCLUSIONS Within the osimertinib AURA Phase I study, EGFR mutation testing across three centralized laboratories using the cobas® EGFR Mutation Test was feasible and successful, with strong concordance between local and central laboratory results, including for T790M. The cobas® EGFR Mutation Test has subsequently been approved as the companion diagnostic test for osimertinib in the USA and Japan.