Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon J. Boulton is active.

Publication


Featured researches published by Simon J. Boulton.


Current Biology | 2001

The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis

Björn Schumacher; Kay Hofmann; Simon J. Boulton; Anton Gartner

In mammals, one of the key regulators necessary for responding to genotoxic stress is the p53 transcription factor. p53 is the single most commonly mutated tumor suppressor gene in human cancers. Here we report the identification of a C. elegans homolog of mammalian p53. Using RNAi and DNA cosuppression technology, we show that C. elegans p53 (cep-1) is required for DNA damage-induced apoptosis in the C. elegans germline. However,cep-1 RNAi does not affect programmed cell death occurring during worm development and physiological (radiation-independent) germ cell death. The DNA binding domain of CEP-1 is related to vertebrate p53 members and possesses the conserved residues most frequently mutated in human tumors. Consistent with this, CEP-1 acts as a transcription factor and is able to activate a transcriptional reporter containing consensus human p53 binding sites. Our data support the notion that p53-mediated transcriptional regulation is part of an ancestral pathway mediating DNA damage-induced apoptosis and reveals C. elegans as a genetically tractable model organism for studying the p53 apoptotic pathway.


Current Biology | 2002

Caenorhabditis elegans HUS-1 Is a DNA Damage Checkpoint Protein Required for Genome Stability and EGL-1-Mediated Apoptosis

E. R. Hofmann; Simon J. Boulton; M. J. Ye; J. J. Hofmann; L. Stergiou; Anton Gartner; Marc Vidal; Michael O. Hengartner

BACKGROUND The inability to efficiently repair DNA damage or remove cells with severely damaged genomes has been linked to several human cancers. Studies in yeasts and mammals have identified several genes that are required for proper activation of cell cycle checkpoints following various types of DNA damage. However, in metazoans, DNA damage can induce apoptosis as well. How DNA damage activates the apoptotic machinery is not fully understood. RESULTS We demonstrate here that the Caenorhabditis elegans gene hus-1 is required for DNA damage-induced cell cycle arrest and apoptosis. Following DNA damage, HUS-1 relocalizes and forms distinct foci that overlap with chromatin. Relocalization does not require the novel checkpoint protein RAD-5; rather, relocalization appears more frequently in rad-5 mutants, suggesting that RAD-5 plays a role in repair. HUS-1 is required for genome stability, as demonstrated by increased frequency of spontaneous mutations, chromosome nondisjunction, and telomere shortening. Finally, we show that DNA damage increases expression of the proapoptotic gene egl-1, a response that requires hus-1 and the p53 homolog cep-1. CONCLUSIONS Our findings suggest that the RAD-5 checkpoint protein is not required for HUS-1 to relocalize following DNA damage. Furthermore, our studies reveal a new function of HUS-1 in the prevention of telomere shortening and mortalization of germ cells. DNA damage-induced germ cell death is abrogated in hus-1 mutants, in part, due to the inability of these mutants to activate egl-1 transcription in a cep-1/p53-dependent manner. Thus, HUS-1 is required for p53-dependent activation of a BH3 domain protein in C. elegans.


EMBO Reports | 2001

A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome

Anne Davy; Paul Bello; Nicolas Thierry-Mieg; Philippe Vaglio; Joseph Hitti; Lynn Doucette-Stamm; Danielle Thierry-Mieg; Jérôme Reboul; Simon J. Boulton; Albertha J. M. Walhout; Olivier Coux; Marc Vidal

The ubiquitin‐proteasome proteolytic pathway is pivotal in most biological processes. Despite a great level of information available for the eukaryotic 26S proteasome—the protease responsible for the degradation of ubiquitylated proteins—several structural and functional questions remain unanswered. To gain more insight into the assembly and function of the metazoan 26S proteasome, a two‐hybrid‐based protein interaction map was generated using 30 Caenorhabditis elegans proteasome subunits. The results recapitulate interactions reported for other organisms and reveal new potential interactions both within the 19S regulatory complex and between the 19S and 20S subcomplexes. Moreover, novel potential proteasome interactors were identified, including an E3 ubiquitin ligase, transcription factors, chaperone proteins and other proteins not yet functionally annotated. By providing a wealth of novel biological hypotheses, this interaction map constitutes a framework for further analysis of the ubiquitin‐proteasome pathway in a multicellular organism amenable to both classical genetics and functional genomics.


Protein Science | 2002

Structural genomics: a pipeline for providing structures for the biologist.

Mark R. Chance; Anne R. Bresnick; Stephen K. Burley; Jian Sheng Jiang; Christopher D. Lima; Andrej Sali; Steven C. Almo; Jeffrey B. Bonanno; John A. Buglino; Simon J. Boulton; Hua Chen; Narayanan Eswar; Guoshun He; Raymond Huang; Valentin A. Ilyin; Linda McMahan; Ursula Pieper; Soumya S. Ray; Marc Vidal; Li Kai Wang

Progress in understanding the organization and sequences of genes in model organisms and humans is rapidly accelerating. Although genome sequences from prokaryotes have been available for some time, only recently have the genome sequences of several eukaryotic organisms been reported, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and humans (Green 2001). A logical continuation of this line of scientific inquiry is to understand the structure and function of all genes in simple and complex organisms, including the pathways leading to the organization and biochemical function of macromolecular assemblies, organelles, cells, organs, and whole life forms. Such investigations have been variously called integrative or systems biology and -omics or high-throughput biology (Ideker et al. 2001, Greenbaum et al. 2001, Vidal 2001). These studies have blossomed because of advances in technologies that allow highly parallel examination of multiple genes and gene products as well as a vision of biology that is not purely reductionist. Although a unified understanding of biological organisms is still far in the future, new high-throughput biological approaches are having a drastic impact on the scientific mainstream. One offshoot of the high-throughput approach, which directly leverages the accumulating gene sequence information, involves mining the sequence data to detect important evolutionary relationships, to identify the basic set of genes necessary for independent life, and to reveal important metabolic processes in humans and clinically relevant pathogens. Programs such as MAGPIE (www.genomes.rockefeller.edu/magpie/magpie.html) compare organisms at a whole genome level (Gaasterland and Sensen 1996; Gaasterland and Ragan 1998) and ask what functions are conferred by the new genes that have evolved in higher organisms (Gaasterland and Oprea 2001). Concurrent with computational annotations of gene structure and function, thousands of full-length ORFs from yeast and higher eukaryotes have become available because of advances in cloning and other molecular biology techniques (Walhout et al. 2000a). Structural biologists have embraced high-throughput biology by developing and implementing technologies that will enable the structures of hundreds of protein domains to be solved in a relatively short time. Although thousands of structures are deposited annually in the Protein Data Bank (PDB), most are identical or very similar in sequence to a structure previously existing in the data bank, representing structures of mutants or different ligand bound states (Brenner et al. 1997). Providing structural information for a broader range of sequences requires a focused effort on determining structure for sequences that are divergent from those already in the database. Although structure does not always elucidate function, in many instances (including the structures of two proteins reported here) the atomic structure readily provides insight into the function of a protein whose function was previously unknown. Typically, such functional annotations are based on homologies that are not recognizable at the sequence level but that are clearly revealed on inspection of the protein fold, identification of a conserved constellation of side-chain functionalities, or by the observation of cofactors associated with function (Burley et al. 1999; Shi et al. 2001; Bonanno et al. 2002).


Yeast | 2000

Yeast Two-Hybrid Systems and Protein Interaction Mapping Projects for Yeast and Worm

Albertha J. M. Walhout; Simon J. Boulton; Marc Vidal

The availability of complete genome sequences necessitates the development of standardized functional assays to analyse the tens of thousands of predicted gene products in high‐throughput experimental settings. Such approaches are collectively referred to as ‘functional genomics’. One approach to investigate the properties of a proteome of interest is by systematic analysis of protein–protein interactions. So far, the yeast two‐hybrid system is the most commonly used method for large‐scale, high‐throughput identification of potential protein–protein interactions. Here, we discuss several technical features of variants of the two‐hybrid systems in light of data recently obtained from different protein interaction mapping projects for the budding yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Copyright


Current Biology | 2004

BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans.

Simon J. Boulton; Julie Martin; Jolanta Polanowska; David E. Hill; Anton Gartner; Marc Vidal

Inherited germline mutations in the tumor suppressor gene BRCA1 predispose individuals to early onset breast and ovarian cancer. BRCA1 together with its structurally related partner BARD1 is required for homologous recombination and DNA double-strand break repair, but how they perform these functions remains elusive. As part of a comprehensive search for DNA repair genes in C. elegans, we identified a BARD1 ortholog. In protein interaction screens, Ce-BRD-1 was found to interact with components of the sumoylation pathway, the TACC domain protein TAC-1, and most importantly, a homolog of mammalian BRCA1. We show that animals depleted for either Ce-brc-1 or Ce-brd-1 display similar abnormalities, including a high incidence of males, elevated levels of p53-dependent germ cell death before and after irradiation, and impaired progeny survival and chromosome fragmentation after irradiation. Furthermore, depletion of ubc-9 and tac-1 leads to radiation sensitivity and a high incidence of males, respectively, potentially linking these genes to the C. elegans BRCA1 pathway. Our findings support a shared role for Ce-BRC-1 and Ce-BRD-1 in C. elegans DNA repair processes, and this role will permit studies of the BRCA1 pathway in an organism amenable to rapid genetic and biochemical analysis.


The EMBO Journal | 2000

A role for Ebi in neuronal cell cycle control

Simon J. Boulton; Adam Brook; Karen Staehling-Hampton; Pascal Heitzler; Nicholas J. Dyson

Mutations in ebi were isolated as enhancers of an over‐proliferation phenotype generated by elevated E2F/DP activity in the Drosophila eye. ebi alleles also strongly suppress a phenotype caused by the cyclin‐dependent kinase inhibitor p21, restoring S phases in the second mitotic wave of the developing eye disk. ebi mutant embryos display ectopic S phases within the peripheral nervous system and central nervous system at a time in development when neuronal precursor cells would normally begin to differentiate. Consistent with this, we find that ebi mutants have a reduced capacity to undergo neuronal differentiation, that Ebi physically interacts with Sina and phyllopod, and that Ebi promotes Ttk88 degradation in vitro and in S2 cells. Ectopic expression of Ttk88 inhibited differentiation in embryos and eye discs; however, this block to differentiation was insufficient to promote S phase entry in either of the situations where ebi mutations gave this effect. We conclude that Ebi has two distinct functions; it promotes the degradation of a repressor of neuronal differentiation (Ttk88), and has a second independent function that limits S phase entry.


Current Opinion in Chemical Biology | 2001

Use of protein-interaction maps to formulate biological questions.

Simon J. Boulton; Sylvie Vincent; Marc Vidal

Protein-interaction mapping approaches generate functional information for large numbers of genes that are predicted from complete genome sequences. This information, released as databases available on the Internet, is likely to transform the way biologists formulate and then address their questions of interest.


Nature Genetics | 2003

C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome- scale protein expression

Jérôme Reboul; Philippe Vaglio; Jean François Rual; Philippe Lamesch; Monica Martinez; Christopher M. Armstrong; Siming Li; Laurent Jacotot; Nicolas Bertin; Rekin's Janky; Troy Moore; James R. Hudson; James L. Hartley; Michael A. Brasch; Jean Vandenhaute; Simon J. Boulton; Gregory A. Endress; Sarah Jenna; Eric Chevet; Vasilis Papasotiropoulos; Peter P. Tolias; Jason Ptacek; Michael Snyder; Raymond Huang; Mark R. Chance; Hongmei Lee; Lynn Doucette-Stamm; David E. Hill; Marc Vidal


Science | 2002

Combined functional genomic maps of the C. elegans DNA damage response

Simon J. Boulton; Anton Gartner; Jérôme Reboul; Philippe Vaglio; Nicholas J. Dyson; David E. Hill; Marc Vidal

Collaboration


Dive into the Simon J. Boulton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albertha J. M. Walhout

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Mark R. Chance

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Raymond Huang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne R. Bresnick

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge