Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon W. Moore is active.

Publication


Featured researches published by Simon W. Moore.


Advances in Experimental Medicine and Biology | 2007

Netrins and Their receptors

Simon W. Moore; Marc Tessier-Lavigne; Timothy E. Kennedy

Netrins are a family of proteins that direct cell and axon migration during development. Three secreted netrins (netrin-1, -3 and -4) have been identified in mammals, in addition to two GPI-anchored membrane proteins, netrin-G1 and G2. Orthologues of netrin-1 play a highly conserved role as guidance cues at the midline of the developing CNS of vertebrates and some bilaterally symmetric invertebrates. In vertebrates, floor plate cells at the ventral midline of the embryonic neural tube secrete netrin-1, generating a circumferential gradient of netrin protein in the neuroepithelium. This protein gradient is bifunctional, attracting some axons to the midline and repelling others. Receptors for the secreted netrins include DCC (deleted in colorectal cancer) and the UNC5 homologues: UNC5A, B, C and D in mammals. DCC mediates chemoattraction, while repulsion requires an UNC5 homologue and, in some cases, DCC. The netrin-G proteins bind NGLs (netrin G ligands), single pass transmembrane proteins unrelated to either DCC or the UNC5 homologues. Netrin function is not limited to the developing CNS midline. Various netrins direct cell and axon migration throughout the embryonic CNS, and in some cases continue to be expressed in the mature nervous system. Furthermore, although initially identified for their ability to guide axons, functional roles for netrins have now been identified outside the nervous system where they influence tissue morphogenesis by directing cell migration and regulating cell-cell and cell-matrix adhesion.


The Journal of Neuroscience | 2005

Deleted in Colorectal Cancer Binding Netrin-1 Mediates Cell Substrate Adhesion and Recruits Cdc42, Rac1, Pak1, and N-WASP into an Intracellular Signaling Complex That Promotes Growth Cone Expansion

Masoud Shekarabi; Simon W. Moore; Nicolas X. Tritsch; Stephen J. Morris; Jean-François Bouchard; Timothy E. Kennedy

Extracellular cues direct axon extension by regulating growth cone morphology. The netrin-1 receptor deleted in colorectal cancer (DCC) is required for commissural axon extension to the floor plate in the embryonic spinal cord. Here we demonstrate that challenging embryonic rat spinal commissural neurons with netrin-1, either in solution or as a substrate, causes DCC-dependent increases in growth cone surface area and filopodia number, which we term growth cone expansion. We provide evidence that DCC influences growth cone morphology by at least two mechanisms. First, DCC mediates an adhesive interaction with substrate-bound netrin-1. Second, netrin-1 binding to DCC recruits an intracellular signaling complex that directs the organization of actin. We show that netrin-1-induced growth cone expansion requires Cdc42 (cell division cycle 42), Rac1 (Ras-related C3 botulinum toxin substrate 1), Pak1 (p21-activated kinase), and N-WASP (neuronal Wiskott-Aldrich syndrome protein) and that the application of netrin-1 rapidly activates Cdc42, Rac1, and Pak1. Furthermore, netrin-1 recruits Cdc42, Rac1, Pak1, and N-WASP into a complex with the intracellular domain of DCC and Nck1. These findings suggest that DCC influences growth cone morphology by acting both as a transmembrane bridge that links extracellular netrin-1 to the actin cytoskeleton and as the core of a protein complex that directs the organization of actin.


The Journal of Neuroscience | 2004

Protein Kinase A Activation Promotes Plasma Membrane Insertion of DCC from an Intracellular Pool: A Novel Mechanism Regulating Commissural Axon Extension

Jean-François Bouchard; Simon W. Moore; Nicolas X. Tritsch; Philippe P. Roux; Masoud Shekarabi; Philip A. Barker; Timothy E. Kennedy

Protein kinase A (PKA) exerts a profound influence on axon extension during development and regeneration; however, the molecular mechanisms underlying these effects of PKA are not understood. Here, we show that DCC (deleted in colorectal cancer), a receptor for the axon guidance cue netrin-1, is distributed both at the plasma membrane and in a pre-existing intracellular vesicular pool in embryonic rat spinal commissural neurons. We hypothesized that the intracellular pool of DCC could be mobilized to the plasma membrane and enhance the response to netrin-1. Consistent with this, we show that application of netrin-1 causes a modest increase in cell surface DCC, without increasing the intracellular concentration of cAMP or activating PKA. Intriguingly, activation of PKA enhances the effect of netrin-1 on DCC mobilization and increases axon extension in response to netrin-1. PKA-dependent mobilization of DCC to the plasma membrane is selective, because the distributions of transient axonal glycoprotein-1, neural cell adhesion molecule, and trkB are not altered by PKA in these cells. Inhibiting adenylate cyclase, PKA, or exocytosis blocks DCC translocation on PKA activation. These findings indicate that netrin-1 increases the amount of cell surface DCC, that PKA potentiates the mobilization of DCC to the neuronal plasma membrane from an intracellular vesicular store, and that translocation of DCC to the cell surface increases axon outgrowth in response to netrin-1.


Development | 2008

Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1.

Simon W. Moore; James P. Correia; Karen Lai Wing Sun; Madeline Pool; Alyson E. Fournier; Timothy E. Kennedy

Molecular cues, such as netrin 1, guide axons by influencing growth cone motility. Rho GTPases are a family of intracellular proteins that regulate the cytoskeleton, substrate adhesion and vesicle trafficking. Activation of the RhoA subfamily of Rho GTPases is essential for chemorepellent axon guidance; however, their role during axonal chemoattraction is unclear. Here, we show that netrin 1, through its receptor DCC, inhibits RhoA in embryonic spinal commissural neurons. To determine whether netrin 1-mediated chemoattraction requires Rho function, we inhibited Rho signaling and assayed axon outgrowth and turning towards netrin 1. Additionally, we examined two important mechanisms that influence the guidance of axons to netrin 1: substrate adhesion and transport of the netrin receptor DCC to the plasma membrane. We found that inhibiting Rho signaling increased plasma membrane DCC and adhesion to substrate-bound netrin 1, and also enhanced netrin 1-mediated axon outgrowth and chemoattractive axon turning. Conversely, overexpression of RhoA or constitutively active RhoA inhibited axonal responses to netrin 1. These findings provide evidence that Rho signaling reduces axonal chemoattraction to netrin 1 by limiting the amount of plasma membrane DCC at the growth cone, and suggest that netrin 1-mediated inhibition of RhoA activates a positive-feedback mechanism that facilitates chemoattraction to netrin 1. Notably, these findings also have relevance for CNS regeneration research. Inhibiting RhoA promotes axon regeneration by disrupting inhibitory responses to myelin and the glial scar. By contrast, we demonstrate that axon chemoattraction to netrin 1 is not only maintained but enhanced, suggesting that this might facilitate directing regenerating axons to appropriate targets.


The Journal of Neuroscience | 2006

Protein kinase A regulates the sensitivity of spinal commissural axon turning to netrin- 1 but does not switch between chemoattraction and chemorepulsion

Simon W. Moore; Timothy E. Kennedy

Bifunctional axon guidance cues have been grouped into two classes depending on whether changes in intracellular cAMP or cGMP switch the response of the growth cone between attraction and repulsion. According to this model, axons respond to netrin-1, a group I guidance cue, as a chemoattractant when cAMP levels are high in the growth cone but switch and are repelled when the intraneuronal concentration of cAMP is low. The model is complicated by the proposal that cAMP-dependent kinase, protein kinase A (PKA), functions as a downstream effector for several guidance cues, including netrin-1, suggesting a close inter-relationship between guidance cue signal transduction and mechanisms regulating the switch between attraction and repulsion. Here, we examine possible interactions between netrin-1-mediated axon guidance and cAMP signaling in embryonic rat spinal commissural neurons. We report that netrin-1 does not alter the concentration of cAMP or PKA activity in these neurons across a wide range of netrin-1 concentrations and time points after application, leading us to conclude that netrin-1 does not regulate PKA in these cells. In contrast to the cyclic nucleotide switch model, we report that, despite inhibiting PKA, embryonic spinal commissural axons were always attracted to netrin-1 and never repelled. Instead, manipulating PKA regulated the sensitivity of chemoattraction to netrin-1: PKA inhibition reduced, and PKA activation increased, the distance over which axons turn toward a source of netrin-1. These findings indicate that the mechanisms underlying cyclic nucleotide-regulated switching are separable from the signal transduction mechanisms required for chemoattraction to netrin-1.


The Journal of Neuroscience | 2008

Soluble adenylyl cyclase is not required for axon guidance to netrin-1.

Simon W. Moore; Karen Lai Wing Sun; Fang Xie; Philip A. Barker; Marco Conti; Timothy E. Kennedy

During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1.


Current protocols in protein science | 2008

Dissection and Culture of Embryonic Spinal Commissural Neurons

Simon W. Moore; Timothy E. Kennedy

Studies of spinal commissural neurons have provided substantial insight into the mechanisms that regulate axon guidance. Explants of embryonic spinal cords and isolated spinal commissural neurons have been important experimental tools for the identification and characterization of several guidance cues, including netrins, semaphorins, slits, sonic hedgehog, BMPs, and wnts. In this unit, protocols are provided for establishing these explant assays to assess the outgrowth and turning capacity of commissural axons. In addition, methods are included for preparing cultures highly enriched with embryonic commissural neurons, which have been used to probe the biochemical signaling mechanisms regulating axon guidance. Curr. Protoc. Neurosci. 45:3.20.1‐3.20.17.


Current protocols in protein science | 2008

UNIT 3.20 Dissection and Culture of Embryonic Spinal Commissural Neurons

Simon W. Moore; Timothy E. Kennedy

Studies of spinal commissural neurons have provided substantial insight into the mechanisms that regulate axon guidance. Explants of embryonic spinal cords and isolated spinal commissural neurons have been important experimental tools for the identification and characterization of several guidance cues, including netrins, semaphorins, slits, sonic hedgehog, BMPs, and wnts. In this unit, protocols are provided for establishing these explant assays to assess the outgrowth and turning capacity of commissural axons. In addition, methods are included for preparing cultures highly enriched with embryonic commissural neurons, which have been used to probe the biochemical signaling mechanisms regulating axon guidance. Curr. Protoc. Neurosci. 43:3.20.1‐3.20.17.


Archive | 2006

Axon guidance during development and regeneration

Simon W. Moore; Timothy E. Kennedy; Michael Selzer; Stephanie Clarke; Leonardo G. Cohen; Gert Kwakkel; Robert H. Miller


Encyclopedia of Neuroscience | 2009

Axonal Pathfinding: Netrins

Simon W. Moore; Timothy E. Kennedy; M. Tessier-Lavigne

Collaboration


Dive into the Simon W. Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Lai Wing Sun

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Alyson E. Fournier

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

James P. Correia

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madeline Pool

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Masoud Shekarabi

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Philip A. Barker

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Nicolas X. Tritsch

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge