Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Wong is active.

Publication


Featured researches published by Simon Wong.


Journal of Experimental Medicine | 2002

Dectin-1 Is A Major β-Glucan Receptor On Macrophages

Gordon D. Brown; Philip R. Taylor; Delyth M. Reid; Janet A. Willment; David L. Williams; Luisa Martinez-Pomares; Simon Wong; Siamon Gordon

Zymosan is a β-glucan– and mannan-rich particle that is widely used as a cellular activator for examining the numerous responses effected by phagocytes. The macrophage mannose receptor (MR) and complement receptor 3 (CR3) have historically been considered the major macrophage lectins involved in the nonopsonic recognition of these yeast-derived particles. Using specific carbohydrate inhibitors, we show that a β-glucan receptor, but not the MR, is a predominant receptor involved in this process. Furthermore, nonopsonic zymosan binding was unaffected by genetic CD11b deficiency or a blocking monoclonal antibody (mAb) against CR3, demonstrating that CR3 was not the β-glucan receptor mediating this activity. To address the role of the recently described β-glucan receptor, Dectin-1, we generated a novel anti–Dectin-1 mAb, 2A11. Using this mAb, we show here that Dectin-1 was almost exclusively responsible for the β-glucan–dependent, nonopsonic recognition of zymosan by primary macro-phages. These findings define Dectin-1 as the leukocyte β-glucan receptor, first described over 50 years ago, and resolves the long-standing controversy regarding the identity of this important molecule. Furthermore, these results identify Dectin-1 as a new target for examining the immunomodulatory properties of β-glucans for therapeutic drug design.


Nature | 2006

Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.

Devin R. Scannell; Kevin P. Byrne; Jonathan L. Gordon; Simon Wong; Kenneth H. Wolfe

A whole-genome duplication occurred in a shared ancestor of the yeast species Saccharomyces cerevisiae, Saccharomyces castellii and Candida glabrata. Here we trace the subsequent losses of duplicated genes, and show that the pattern of loss differs among the three species at 20% of all loci. For example, several transcription factor genes, including STE12, TEC1, TUP1 and MCM1, are single-copy in S. cerevisiae but are retained in duplicate in S. castellii and C. glabrata. At many loci, different species have lost different members of a duplicated gene pair, so that 4–7% of single-copy genes compared between any two species are not orthologues. This pattern of gene loss provides strong evidence for speciation through a version of the Bateson–Dobzhansky–Muller mechanism, in which the loss of alternative copies of duplicated genes leads to reproductive isolation. We show that the lineages leading to the three species diverged shortly after the whole-genome duplication, during a period of precipitous gene loss. The set of loci at which single-copy paralogues are retained is biased towards genes involved in ribosome biogenesis and genes that evolve slowly, consistent with the hypothesis that reciprocal gene loss is more likely to occur between duplicated genes that are functionally indistinguishable. We propose a simple, unified model in which a single mechanism—passive gene loss—enabled whole-genome duplication and led to the rapid emergence of new yeast species.


Nature Genetics | 2005

Birth of a metabolic gene cluster in yeast by adaptive gene relocation

Simon Wong; Kenneth H. Wolfe

Although most eukaryotic genomes lack operons, they contain some physical clusters of genes that are related in function despite being unrelated in sequence. How these clusters are formed during evolution is unknown. The DAL cluster is the largest metabolic gene cluster in yeast and consists of six adjacent genes encoding proteins that enable Saccharomyces cerevisiae to use allantoin as a nitrogen source. We show here that the DAL cluster was assembled, quite recently in evolutionary terms, through a set of genomic rearrangements that happened almost simultaneously. Six of the eight genes involved in allantoin degradation, which were previously scattered around the genome, became relocated to a single subtelomeric site in an ancestor of S. cerevisiae and Saccharomyces castellii. These genomic rearrangements coincided with a biochemical reorganization of the purine degradation pathway, which switched to importing allantoin instead of urate. This change eliminated urate oxidase, one of several oxygen-consuming enzymes that were lost by yeasts that can grow vigorously in anaerobic conditions. The DAL cluster is located in a domain of modified chromatin involving both H2A.Z histone exchange and Hst1-Sum1–mediated histone deacetylation, and it may be a coadapted gene complex formed by epistatic selection.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Gene order evolution and paleopolyploidy in hemiascomycete yeasts

Simon Wong; Geraldine Butler; Kenneth H. Wolfe

The wealth of comparative genomics data from yeast species allows the molecular evolution of these eukaryotes to be studied in great detail. We used “proximity plots” to visually compare chromosomal gene order information from 14 hemiascomycetes, including the recent Génolevures survey, to Saccharomyces cerevisiae. Contrary to the original reports, we find that the Génolevures data strongly support the hypothesis that S. cerevisiae is a degenerate polyploid. Using gene order information alone, 70% of the S. cerevisiae genome can be mapped into “sister” regions that tile together with almost no overlap. This map confirms and extends the map of sister regions that we constructed previously by using duplicated genes, an independent source of information. Combining gene order and gene duplication data assigns essentially the whole genome into sister regions, the largest gap being only 36 genes long. The 16 centromere regions of S. cerevisiae form eight pairs, indicating that an ancestor with eight chromosomes underwent complete doubling; alternatives such as segmental duplications can be ruled out. Gene arrangements in Kluyveromyces lactis and four other species agree quantitatively with what would be expected if they diverged from S. cerevisiae before its polyploidization. In contrast, Saccharomyces exiguus, Saccharomyces servazzii, and Candida glabrata show higher levels of gene adjacency conservation, and more cases of imperfect conservation, suggesting that they split from the S. cerevisiae lineage after polyploidization. This finding is confirmed by sequences around the C. glabrata TRP1 and IPP1 loci, which show that it contains sister regions derived from the same duplication event as that of S. cerevisiae.


Eukaryotic Cell | 2005

A Genome Sequence Survey Shows that the Pathogenic Yeast Candida parapsilosis Has a Defective MTLa1 Allele at Its Mating Type Locus

Mary E. Logue; Simon Wong; Kenneth H. Wolfe; Geraldine Butler

ABSTRACT Candida parapsilosis is responsible for ca. 15% of Candida infections and is of particular concern in neonates and surgical intensive care patients. The related species Candida albicans has recently been shown to possess a functional mating pathway. To analyze the analogous pathway in C. parapsilosis, we carried out a genome sequence survey of the type strain. We identified ca. 3,900 genes, with an average amino acid identity of 59% with C. albicans. Of these, 23 are predicted to be predominantly involved in mating. We identified a genomic locus homologous to the MTLa mating type locus of C. albicans, but the C. parapsilosis type strain has at least two internal stop codons in the MTLa1 open reading frame, and two predicted introns are not spliced. These stop codons were present in MTLa1 of all eight C. parapsilosis isolates tested. Furthermore, we found that all isolates of C. parapsilosis tested appear to contain only the MTLa idiomorph at the presumptive mating locus, unlike C. albicans and C. dubliniensis. MTLα sequences are present but at a different chromosomal location. It is therefore likely that all (or at least the majority) of C. parapsilosis isolates have a mating pathway that is either defective or substantially different from that of C. albicans.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Development of a specific system for targeting protein to metallophilic macrophages.

Philip R. Taylor; Susanne Zamze; Richard J. Stillion; Simon Wong; Siamon Gordon; Luisa Martinez-Pomares

The cysteine-rich domain (CR) of the mannose receptor binds sulfated glycoprotein CR ligand (CRL) expressed by subpopulations of myeloid cells in secondary lymphoid organs (CRL+ cells). In naïve mice, these CRL+ cells, metallophilic macrophages (Mφ) in spleen and subcapsular sinus Mφ in lymph nodes, are located strategically for antigen capture and are adjacent to B cell follicles, but their role in the immune response is unknown. We have exploited the lectin activity of CR to develop a highly specific system for targeting protein to CRL+ Mφ. We demonstrate that the sulfated carbohydrates recognized by CR are exposed to the extracellular milieu and mediate highly specific targeting of CR-containing proteins. This model will allow the dissection of the role of metallophilic Mφ in an immune response in vivo.


BMC Systems Biology | 2009

Protein-protein interaction as a predictor of subcellular location

Chang Jin Shin; Simon Wong; Melissa J. Davis; Mark A. Ragan

BackgroundMany biological processes are mediated by dynamic interactions between and among proteins. In order to interact, two proteins must co-occur spatially and temporally. As protein-protein interactions (PPIs) and subcellular location (SCL) are discovered via separate empirical approaches, PPI and SCL annotations are independent and might complement each other in helping us to understand the role of individual proteins in cellular networks. We expect reliable PPI annotations to show that proteins interacting in vivo are co-located in the same cellular compartment. Our goal here is to evaluate the potential of using PPI annotation in determining SCL of proteins in human, mouse, fly and yeast, and to identify and quantify the factors that contribute to this complementarity.ResultsUsing publicly available data, we evaluate the hypothesis that interacting proteins must be co-located within the same subcellular compartment. Based on a large, manually curated PPI dataset, we demonstrate that a substantial proportion of interacting proteins are in fact co-located. We develop an approach to predict the SCL of a protein based on the SCL of its interaction partners, given sufficient confidence in the interaction itself. The frequency of false positive PPIs can be reduced by use of six lines of supporting evidence, three based on type of recorded evidence (empirical approach, multiplicity of databases, and multiplicity of literature citations) and three based on type of biological evidence (inferred biological process, domain-domain interactions, and orthology relationships), with biological evidence more-effective than recorded evidence. Our approach performs better than four existing prediction methods in identifying the SCL of membrane proteins, and as well as or better for soluble proteins.ConclusionUnderstanding cellular systems requires knowledge of the SCL of interacting proteins. We show how PPI data can be used more effectively to yield reliable SCL predictions for both soluble and membrane proteins. Scope exists for further improvement in our understanding of cellular function through consideration of the biological context of molecular interactions.


intelligent systems in molecular biology | 2008

MACHOS: Markov clusters of homologous subsequences

Simon Wong; Mark A. Ragan

Motivation: The classification of proteins into homologous groups (families) allows their structure and function to be analysed and compared in an evolutionary context. The modular nature of eukaryotic proteins presents a considerable challenge to the delineation of families, as different local regions within a single protein may share common ancestry with distinct, even mutually exclusive, sets of homologs, thereby creating an intricate web of homologous relationships if full-length sequences are taken as the unit of evolution. We attempt to disentangle this web by developing a fully automated pipeline to delineate protein subsequences that represent sensible units for homology inference, and clustering them into putatively homologous families using the Markov clustering algorithm. Results: Using six eukaryotic proteomes as input, we clustered 162 349 protein sequences into 19 697–77 415 subsequence families depending on granularity of clustering. We validated these Markov clusters of homologous subsequences (MACHOS) against the manually curated Pfam domain families, using a quality measure to assess overlap. Our subsequence families correspond well to known domain families and achieve higher quality scores than do groups generated by fully automated domain family classification methods. We illustrate our approach by analysis of a group of proteins that contains the glutamyl/glutaminyl-tRNA synthetase domain, and conclude that our method can produce high-coverage decomposition of protein sequence space into precise homologous families in a way that takes the modularity of eukaryotic proteins into account. This approach allows for a fine-scale examination of evolutionary histories of proteins encoded in eukaryotic genomes. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online. MACHOS for the six proteomes are available as FASTA-formatted files: http://research1t.imb.uq.edu.au/ragan/machos


Genome Biology | 2003

Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata

Simon Wong; Mario A. Fares; Wolfgang Zimmermann; Geraldine Butler; Kenneth H. Wolfe


imt-gt international conference mathematics, statistics and their applications | 2009

An efficient parallel implementation of Markov clustering algorithm for large-scale protein-protein interaction networks that uses MPI

Alhadi Bustamam; Muhammad Shoaib B. Sehgal; Nicholas A. Hamilton; Simon Wong; Mark A. Ragan; Kevin Burrage

Collaboration


Dive into the Simon Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Ragan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Jin Shin

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Kevin Burrage

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Melissa J. Davis

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge