Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Lamba is active.

Publication


Featured researches published by Simona Lamba.


JAMA | 2010

Association of KRAS p.G13D Mutation With Outcome in Patients With Chemotherapy-Refractory Metastatic Colorectal Cancer Treated With Cetuximab

Wendy De Roock; Derek J. Jonker; Federica Di Nicolantonio; Andrea Sartore-Bianchi; Dongsheng Tu; Salvatore Siena; Simona Lamba; Sabrina Arena; Milo Frattini; Hubert Piessevaux; Eric Van Cutsem; Christopher J. O'Callaghan; Shirin Khambata-Ford; John Zalcberg; John Simes; Christos Stelios Karapetis; Alberto Bardelli; Sabine Tejpar

CONTEXT Patients with metastatic colorectal cancer who have KRAS codon 12- or KRAS codon 13-mutated tumors are presently excluded from treatment with the anti-epidermal growth factor receptor monoclonal antibody cetuximab. OBJECTIVE To test the hypothesis that KRAS codon 13 mutations are associated with a better outcome after treatment with cetuximab than observed with other KRAS mutations. DESIGN, SETTING, AND PATIENTS We studied the association between KRAS mutation status (p.G13D vs other KRAS mutations) and response and survival in a pooled data set of 579 patients with chemotherapy-refractory colorectal cancer treated with cetuximab between 2001 and 2008. Patients were included in the CO.17, BOND, MABEL, EMR202600, EVEREST, BABEL, or SALVAGE clinical trials or received off-study treatment. Univariate and multivariate analyses, adjusting for possible prognostic factors and data set, were performed. The effect of the different mutations was studied in vitro by constructing isogenic cell lines with wild-type KRAS, p.G12V, or p.G13D mutant alleles and treating them with cetuximab. MAIN OUTCOME MEASURES The main efficacy end point was overall survival. Secondary efficacy end points were response rate and progression-free survival. RESULTS In comparison with patients with other KRAS-mutated tumors, patients with p.G13D-mutated tumors (n = 32) treated with cetuximab had longer overall survival (median, 7.6 [95% confidence interval {CI}, 5.7-20.5] months vs 5.7 [95% CI, 4.9-6.8] months; adjusted hazard ratio [HR], 0.50; 95% CI, 0.31-0.81; P = .005) and longer progression-free survival (median, 4.0 [95% CI, 1.9-6.2] months vs 1.9 [95% CI, 1.8-2.8] months; adjusted HR, 0.51; 95% CI, 0.32-0.81; P = .004). There was a significant interaction between KRAS mutation status (p.G13D vs other KRAS mutations) and overall survival benefit with cetuximab treatment (adjusted HR, 0.30; 95% CI, 0.14-0.67; P = .003). In vitro and mouse model analysis showed that although p.G12V-mutated colorectal cells were insensitive to cetuximab, p.G13D-mutated cells were sensitive, as were KRAS wild-type cells. CONCLUSIONS In this analysis, use of cetuximab was associated with longer overall and progression-free survival among patients with chemotherapy-refractory colorectal cancer with p.G13D-mutated tumors than with other KRAS-mutated tumors. Evaluation of cetuximab therapy in these tumors in prospective randomized trials may be warranted.


Nature Medicine | 2015

Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients

Giulia Siravegna; Benedetta Mussolin; Michela Buscarino; Giorgio Corti; Andrea Cassingena; Giovanni Crisafulli; Agostino Ponzetti; Chiara Cremolini; Alessio Amatu; Calogero Lauricella; Simona Lamba; Sebastijan Hobor; Antonio Avallone; Emanuele Valtorta; Giuseppe Rospo; Enzo Medico; Valentina Motta; Carlotta Antoniotti; Fabiana Tatangelo; Beatriz Bellosillo; Silvio Veronese; Alfredo Budillon; Clara Montagut; Patrizia Racca; Silvia Marsoni; Alfredo Falcone; Ryan B. Corcoran; Federica Di Nicolantonio; Fotios Loupakis; Salvatore Siena

Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.


PLOS ONE | 2009

Multi-Determinants Analysis of Molecular Alterations for Predicting Clinical Benefit to EGFR-Targeted Monoclonal Antibodies in Colorectal Cancer

Andrea Sartore-Bianchi; Federica Di Nicolantonio; Michele Nichelatti; Francesca Molinari; Sara De Dosso; Piercarlo Saletti; Miriam Martini; Tiziana Cipani; Giovanna Marrapese; Luca Mazzucchelli; Simona Lamba; Silvio Veronese; Milo Frattini; Alberto Bardelli; Salvatore Siena

Background KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. Methodology/Principal Findings We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001). Conclusions/Significance When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.


Science Translational Medicine | 2014

Blockade of EGFR and MEK Intercepts Heterogeneous Mechanisms of Acquired Resistance to Anti-EGFR Therapies in Colorectal Cancer

Sandra Misale; Sabrina Arena; Simona Lamba; Giulia Siravegna; Alice Lallo; Sebastijan Hobor; Mariangela Russo; Michela Buscarino; Luca Lazzari; Andrea Sartore-Bianchi; Katia Bencardino; Alessio Amatu; Calogero Lauricella; Emanuele Valtorta; Salvatore Siena; Federica Di Nicolantonio; Alberto Bardelli

Colorectal cancers that become resistant to EGFR inhibitors through a variety of mechanisms can be effectively treated by inhibiting MEK in conjunction with EGFR. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential applications of this technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. Colorectal cancers (CRCs) that are sensitive to the anti–epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal–regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.


Cancer Research | 2007

Novel Somatic and Germline Mutations in Cancer Candidate Genes in Glioblastoma, Melanoma, and Pancreatic Carcinoma

Asha Balakrishnan; Fonnet E. Bleeker; Simona Lamba; Monica Rodolfo; Maria Daniotti; Aldo Scarpa; Angela A.G. van Tilborg; Sieger Leenstra; Carlo Zanon; Alberto Bardelli

A recent systematic sequence analysis of well-annotated human protein coding genes or consensus coding sequences led to the identification of 189 genes displaying somatic mutations in breast and colorectal cancers. Based on their mutation prevalence, a subset of these genes was identified as cancer candidate (CAN) genes as they could be potentially involved in cancer. We evaluated the mutational profiles of 19 CAN genes in the highly aggressive tumors: glioblastoma, melanoma, and pancreatic carcinoma. Among other changes, we found novel somatic mutations in EPHA3, MLL3, TECTA, FBXW7, and OBSCN, affecting amino acids not previously found to be mutated in human cancers. Interestingly, we also found a germline nucleotide variant of OBSCN that was previously reported as a somatic mutation. Our results identify specific genetic lesions in glioblastoma, melanoma, and pancreatic cancers and indicate that CAN genes and their mutational profiles are tumor specific. Some of the mutated genes, such as the tyrosine kinase EPHA3, are clearly amenable to pharmacologic intervention and could represent novel therapeutic targets for these incurable cancers. We also speculate that similar to other oncogenes and tumor suppressor genes, mutations affecting OBSCN could be involved in cancer predisposition.


Nature Communications | 2015

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets

Enzo Medico; Mariangela Russo; Gabriele Picco; Carlotta Cancelliere; Emanuele Valtorta; Giorgio Corti; Michela Buscarino; Claudio Isella; Simona Lamba; Barbara Martinoglio; Silvio Veronese; Salvatore Siena; Andrea Sartore-Bianchi; Marco Beccuti; Marcella Mottolese; Francesca Cordero; Federica Di Nicolantonio; Alberto Bardelli

The development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses

Federica Di Nicolantonio; Sabrina Arena; Margherita Gallicchio; Davide Zecchin; Miriam Martini; Simona Emilia Flonta; Giulia Stella; Simona Lamba; Carlotta Cancelliere; Mariangela Russo; Massimo Geuna; Giovanni Appendino; Roberto Fantozzi; Enzo Medico; Alberto Bardelli

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Neuro-oncology | 2014

The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone

Remco J. Molenaar; D. Verbaan; Simona Lamba; Carlo Zanon; Judith W. Jeuken; Sandra H.E. Boots-Sprenger; Pieter Wesseling; Theo J.M. Hulsebos; Dirk Troost; Angela A.G. van Tilborg; Sieger Leenstra; W. Peter Vandertop; Alberto Bardelli; Cornelis J. F. Van Noorden; Fonnet E. Bleeker

BACKGROUND Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of genetic and epigenetic alterations in glioblastoma patients. METHODS We screened 98 human glioblastoma samples for genetic and epigenetic alterations in 10 genes and chromosomal loci by PCR and multiplex ligation-dependent probe amplification (MLPA). We tested the association between these genetic and epigenetic alterations and glioblastoma patient survival. Subsequently, we developed a 2-gene survival predictor. RESULTS Multivariate analyses revealed that mutations in isocitrate dehydrogenase 1 (IDH1), promoter methylation of MGMT, irradiation dosage, and Karnofsky Performance Status (KFS) were independent prognostic factors. A 2-gene predictor for glioblastoma survival was generated. Based on the genetic and epigenetic status of IDH1 and MGMT, glioblastoma patients were stratified into 3 clinically different genotypes: glioblastoma patients with IDH1mt/MGMTmet had the longest survival, followed by patients with IDH1mt/MGMTunmet or IDH1wt/MGMTmet, and patients with IDH1wt/MGMTunmet had the shortest survival. This 2-gene predictor was an independent prognostic factor and performed significantly better in predicting survival than either IDH1 mutations or MGMT methylation alone. The predictor was validated in 3 external datasets. DISCUSSION The combination of IDH1 mutations and MGMT methylation outperforms either IDH1 mutations or MGMT methylation alone in predicting survival of glioblastoma patients. This information will help to increase our understanding of glioblastoma biology, and it may be helpful for baseline comparisons in future clinical trials.


PLOS ONE | 2009

Mutational profile of GNAQQ209 in human tumors.

Simona Lamba; Lara Felicioni; Fiamma Buttitta; Fonnet E. Bleeker; Sara Malatesta; Vincenzo Corbo; Aldo Scarpa; Monica Rodolfo; Margaret A. Knowles; Milo Frattini; Antonio Marchetti; Alberto Bardelli

Background Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein α-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene. Methodology To assess if the mutations are present in other tumor types we performed a systematic mutational profile of the GNAQ exon 5 in a panel of 922 neoplasms, including glioblastoma, gastrointestinal stromal tumors (GIST), acute myeloid leukemia (AML), blue naevi, skin melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, and thyroid carcinomas. Principal Findings We detected the previously reported mutations in 6/13 (46%) blue naevi. Changes affecting Q209 were not found in any of the other tumors. Our data indicate that the occurrence of GNAQ mutations display a unique pattern being present in a subset of melanocytic tumors but not in malignancies of glial, epithelial and stromal origin analyzed in this study.


Journal of Experimental & Clinical Cancer Research | 2010

The analysis of PIK3CA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type

Stefano Barbi; Ivana Cataldo; Giovanni de Manzoni; Samantha Bersani; Simona Lamba; Silvia Mattuzzi; Alberto Bardelli; Aldo Scarpa

BackgroundPIK3CA is one of the genes most frequently mutated in human cancers and it is a potential target for personalized therapy. The aim of this study was to assess the frequency and type of PIK3CA mutations in gastric carcinoma and compare them with their clinical pathological correlates.MethodsWe analysed 264 gastric cancers, including 39 with microsatellite instability (MSI), for mutations in the two PIK3CA hotspots in exons 9 and 20 by direct sequencing of DNA obtained from microdissected cancer cells.ResultsThe cases harbouring mutations were 42 (16%). All were heterozygous missense single base substitutions; the most common was H1047R (26/42; 62%) in exon 20 and the second was Q546K (4/42; 9.5%) in exon 9. All the mutated MSI cases (8/39) carried the H1047R mutation. No other association between PI3KCA mutations and their clinical pathological covariates was found. A metanalysis of the mutations occurring in the same regions presented in 27 publications showed that ratio between exon 20 and exon 9 prevalences was 0.6 (95% CI: 0.5 -0.8) for colon, 1.6 (95% CI: 1.1 -2.3) for breast, 2.7 (95% CI: 1.6 -4.9) for gastric and 4.1 (95% CI: 1.9 -10.3) for endometrial cancer.ConclusionsThe overall prevalence of PIK3CA mutations implies an important role for PIK3CA in gastric cancer. The lack of association with any clinical-pathological condition suggests that mutations in PIK3CA occur early in the development of cancer. The metanalysis showed that exon-selectivity is an important signature of cancer type reflecting different contexts in which tumours arise.

Collaboration


Dive into the Simona Lamba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Siena

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge