Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Salati is active.

Publication


Featured researches published by Simona Salati.


Blood | 2014

miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis

Ruggiero Norfo; Roberta Zini; Valentina Pennucci; Elisa Bianchi; Simona Salati; Paola Guglielmelli; Costanza Bogani; Tiziana Fanelli; Carmela Mannarelli; Vittorio Rosti; Daniela Pietra; Silvia Salmoiraghi; Andrea Bisognin; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Zelia Prudente; Giovanni Barosi; Mario Cazzola; Alessandro Rambaldi; Stefania Bortoluzzi; Sergio Ferrari; Enrico Tagliafico; Alessandro M. Vannucchi; Rossella Manfredini

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Blood | 2010

c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression

Elisa Bianchi; Roberta Zini; Simona Salati; Elena Tenedini; Ruggiero Norfo; Enrico Tagliafico; Rossella Manfredini; Sergio Ferrari

The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.


Current Opinion in Hematology | 2008

Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects.

Clint Campbell; Ruth M. Risueño; Simona Salati; Borhane Guezguez; Mickie Bhatia

Purpose of reviewHematopoietic homeostasis depends on appropriate self-renewal and differentiation capacity of hematopoietic stem cells. The characterization of the key extracellular signals that integrate with intracellular molecular machinery to regulate hematopoietic stem cells fate choice is crucial to move toward hematopoietic stem cell clinical application. Recent findingsSeveral factors have been described as positive and negative regulators of hematopoietic stem cell self-renewal and differentiation. Most of the hematopoietic cytokines studied promote either survival or differentiation or both in hematopoietic stem cells ex vivo, whereas morphogens (Wnt, Notch, and Hedgehog) may signify a class of hematopoietic stem cell regulators that support expansion of the hematopoietic stem cell pool by a combination of survival and induced self-renewal. SummaryAlthough Wnt, Notch, and Hedgehog signaling pathways have been implicated in self-renewal and proliferation in vivo, modulation of these pathways alone does not result in substantive expansion of hematopoietic stem cells ex vivo. In addition to these signaling pathways, Bcl-2 family members may have an important role in inducing survival in hematopoietic stem cells both in vivo and ex vivo. Understanding the complex relationship between these unique signaling pathways is essential to achieve successful ex-vivo expansion toward enhanced hematopoietic stem cell transplantation-based therapies.


Cell Death & Differentiation | 2006

Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells

Claudia Gemelli; Monica Montanari; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari

Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.


Stem Cells | 2005

The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self‐Renewal, Commitment, and Engraftment

Rossella Manfredini; Roberta Zini; Simona Salati; M Siena; Elena Tenedini; Enrico Tagliafico; Monica Montanari; Tommaso Zanocco-Marani; Claudia Gemelli; Tatiana Vignudelli; Alexis Grande; Miriam Fogli; Lara Rossi; Maria Elena Fagioli; Lucia Catani; Roberto M. Lemoli; Sergio Ferrari

The gene expression profile of CD34− hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage‐negative (Lin−) CD34−, Lin−CD34+, and Lin+CD34+ cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34− cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin‐dependent kinases (CDKs), CDK inhibitors, and growth‐arrest genes. According to the expression of their receptors and transducers, interleukin (IL)‐10 and IL‐17 showed an inhibitory effect on the clonogenic activity of CD34− cells. Conversely, CD34+ cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34− cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self‐renewal and lineage commitment. The preferential expression in CD34+ cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34+ cells. Thus, the different kinetic status of CD34− and CD34+ cells, detailed by molecular and functional analysis, significantly influences their biological behavior.


Blood | 2009

Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib

Roberto M. Lemoli; Valentina Salvestrini; Elisa Bianchi; Francesco Bertolini; Miriam Fogli; Marilina Amabile; Agostino Tafuri; Simona Salati; Roberta Zini; Nicoletta Testoni; Cristina Rabascio; Lara Rossi; Ines Martin-Padura; Fausto Castagnetti; Paola Marighetti; Giovanni Martinelli; Michele Baccarani; Sergio Ferrari; Rossella Manfredini

We show the molecular and functional characterization of a novel population of lineage-negative CD34-negative (Lin(-)CD34(-)) hematopoietic stem cells from chronic myelogenous leukemia (CML) patients at diagnosis. Molecular karyotyping and quantitative analysis of BCR-ABL transcript demonstrated that approximately one-third of CD34(-) cells are leukemic. CML Lin(-)CD34(-) cells showed kinetic quiescence and limited clonogenic capacity. However, stroma-dependent cultures induced CD34 expression on some cells and cell cycling, and increased clonogenic activity and expression of BCR-ABL transcript. Lin(-)CD34(-) cells showed hematopoietic cell engraftment rate in 2 immunodeficient mouse strains similar to Lin-CD34(+) cells, whereas endothelial cell engraftment was significantly higher. Gene expression profiling revealed the down-regulation of cell-cycle arrest genes and genes involved in antigen presentation and processing, while the expression of genes related to tumor progression, such as angiogenic factors, was strongly up-regulated compared with normal counterparts. Phenotypic analysis confirmed the significant down-regulation of HLA class I and II molecules in CML Lin(-)CD34(-) cells. Imatinib mesylate did not reduce fusion transcript levels, BCR-ABL kinase activity, and clonogenic efficiency of CML Lin(-)CD34(-) cells in vitro. Moreover, leukemic CD34(-) cells survived exposure to BCR-ABL inhibitors in vivo. Thus, we identified a novel CD34(-) leukemic stem cell subset in CML with peculiar molecular and functional characteristics.


Stem Cells | 2008

Role of CD34 Antigen in Myeloid Differentiation of Human Hematopoietic Progenitor Cells

Simona Salati; Roberta Zini; Elisa Bianchi; Anna Testa; Fulvio Mavilio; Rossella Manfredini; Sergio Ferrari

CD34 is a transmembrane protein that is strongly expressed on hematopoietic stem/progenitor cells (HSCs); despite its importance as a marker of HSCs, its function is still poorly understood, although a role in cell adhesion has been demonstrated. To characterize the function of CD34 antigen on human HSCs, we examined, by both inhibition and overexpression, the role of CD34 in the regulation of HSC lineage differentiation. Our results demonstrate that CD34 silencing enhances HSC granulocyte and megakaryocyte differentiation and reduces erythroid maturation. In agreement with these results, the gene expression profile of these cells reveals the upregulation of genes involved in granulocyte and megakaryocyte differentiation and the downregulation of erythroid genes. Consistently, retroviral‐mediated CD34 overexpression leads to a remarkable increase in erythroid progenitors and a dramatic decrease in granulocyte progenitors, as evaluated by clonogenic assay. Together, these data indicate that the CD34 molecule promotes the differentiation of CD34+ hematopoietic progenitors toward the erythroid lineage, which is achieved, at least in part, at the expense of granulocyte and megakaryocyte lineages.


Leukemia | 2006

Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia

Enrico Tagliafico; Elena Tenedini; Rossella Manfredini; Alexis Grande; Francesco Ferrari; Enrica Roncaglia; Silvio Bicciato; Roberta Zini; Simona Salati; Elisa Bianchi; Claudia Gemelli; Monica Montanari; Tatiana Vignudelli; Tommaso Zanocco-Marani; Sandra Parenti; P Paolucci; G Martinelli; Pier Paolo Piccaluga; M Baccarani; Giorgina Specchia; Umberto Torelli; Sergio Ferrari

Acute myeloid leukemia (AML) blasts are immature committed myeloid cells unable to spontaneously undergo terminal maturation, and characterized by heterogeneous sensitivity to natural differentiation inducers. Here, we show a molecular signature predicting the resistance or sensitivity of six myeloid cell lines to differentiation induced in vitro with retinoic acid or vitamin D. The identified signature was further validated by TaqMan assay for the prediction of response to an in vitro differentiation assay performed on 28 freshly isolated AML blast populations. The TaqMan assay successfully predicts the in vitro resistance or responsiveness of AML blasts to differentiation inducers. Furthermore, performing a meta-analysis of publicly available microarray data sets, we also show the accuracy of our prediction on known phenotypes and suggest that our signature could become useful for the identification of patients eligible for new therapeutic strategies.


Cell Death & Differentiation | 2015

MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF.

Elisa Bianchi; Jenny Bulgarelli; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Ruggiero Norfo; Valentina Pennucci; Roberta Zini; Simona Salati; Zelia Prudente; Sergio Ferrari; Rossella Manfredini

The transcription factor MYB has a key role in hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that MYB controls erythroid versus megakaryocyte lineage decision by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which MYB affects lineage fate decision, we performed the integrative analysis of miRNA and mRNA changes in MYB-silenced human primary CD34+ HPCs. Among the miRNAs with the highest number of predicted targets, we focused our studies on hsa-miR-486-3p by demonstrating that MYB controls miR-486-3p expression through the transactivation of its host gene, ankyrin-1 (ANK1) and that miR-486-3p affects HPCs commitment. Indeed, overexpression and knockdown experiments demonstrated that miR-486-3p supports the erythropoiesis while restraining the megakaryopoiesis. Of note, miR-486-3p also favors granulocyte differentiation while repressing the macrophage differentiation. To shed some light on the molecular mechanisms through which miR-486-3p affects HPCs lineage commitment, we profiled the gene expression changes upon miR-486-3p overexpression in CD34+ cells. Among the genes downregulated in miR-486-3p-overexpressing HPCs and computationally predicted to be miR-486-3p targets, we identified MAF as a miR-486-3p target by 3′UTR luciferase reporter assay. Noteworthy, MAF overexpression was able to partially reverse the effects of miR-486-3p overexpression on erythroid versus megakaryocyte lineage choice. Moreover, the MYB/MAF co-silencing constrained the skewing of erythroid versus megakaryocyte lineage commitment in MYB-silenced CD34+ cells, by restraining the expansion of megakaryocyte lineage while partially rescuing the impairment of erythropoiesis. Therefore, our data collectively demonstrate that MYB favors erythropoiesis and restrains megakaryopoiesis through the transactivation of miR-486-3p expression and the subsequent downregulation of MAF. As a whole, our study uncovers the MYB/miR-486-3p/MAF axis as a new mechanism underlying the MYB-driven control of erythroid versus megakaryocyte lineage fate decision.


Blood | 2012

Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration and engraftment in immunodeficient mice

Valentina Salvestrini; Roberta Zini; Lara Rossi; Sara Gulinelli; Rossella Manfredini; Elisa Bianchi; Wanda Piacibello; Luisa Caione; Giorgia Migliardi; Maria Rosaria Ricciardi; Agostino Tafuri; Marco Romano; Simona Salati; Francesco Di Virgilio; Sergio Ferrari; Michele Baccarani; Davide Ferrari; Roberto M. Lemoli

Extracellular ATP and UTP nucleotides increase the proliferation and engraftment potential of normal human hematopoietic stem cells via the engagement of purinergic receptors (P2Rs). In the present study, we show that ATP and UTP have strikingly opposite effects on human acute myeloblastic leukemia (AML) cells. Leukemic cells express P2Rs. ATP-stimulated leukemic cells, but not normal CD34+ cells, undergo down-regulation of genes involved in cell proliferation and migration, whereas cell-cycle inhibitors are up-regulated. Functionally, ATP induced the inhibition of proliferation and accumulation of AML cells, but not of normal cells, in the G0 phase of the cell cycle. Exposure to ATP or UTP inhibited AML-cell migration in vitro. In vivo, xenotransplantation experiments demonstrated that the homing and engraftment capacity of AML blasts and CD34+CD38- cells to immunodeficient mice BM was significantly inhibited by pretreatment with nucleotides. P2R-expression analysis and pharmacologic profiling suggested that the inhibition of proliferation by ATP was mediated by the down-regulation of the P2X7R, which is up-regulated on untreated blasts, whereas the inhibition of chemotaxis was mainly mediated via P2Y2R and P2Y4R subtypes. We conclude that, unlike normal cells, P2R signaling inhibits leukemic cells and therefore its pharmacologic modulation may represent a novel therapeutic strategy.

Collaboration


Dive into the Simona Salati's collaboration.

Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Roberta Zini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Bianchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Enrico Tagliafico

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Ruggiero Norfo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha Ruberti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Pennucci

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge