Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Enrico Tagliafico is active.

Publication


Featured researches published by Enrico Tagliafico.


Leukemia | 2013

Mutations and prognosis in primary myelofibrosis

Alessandro M. Vannucchi; Terra L. Lasho; Paola Guglielmelli; Flavia Biamonte; Animesh Pardanani; Arturo Pereira; Christy Finke; Joannah Score; Naseema Gangat; Carmela Mannarelli; Rhett P. Ketterling; Giada Rotunno; Ryan A. Knudson; Maria Chiara Susini; Rebecca R. Laborde; Ambra Spolverini; Alessandro Pancrazzi; Lisa Pieri; Rossella Manfredini; Enrico Tagliafico; Roberta Zini; Amy V. Jones; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Daniela Pietra; Elisa Rumi; Francisco Cervantes; Giovanni Barosi; M Cazzola

Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformation.


Science Translational Medicine | 2012

Transplantation of Genetically Corrected Human iPSC-Derived Progenitors in Mice with Limb-Girdle Muscular Dystrophy

Francesco Saverio Tedesco; Mattia F M Gerli; Laura Perani; Sara Benedetti; Federica Ungaro; Marco Cassano; Stefania Antonini; Enrico Tagliafico; Valentina Artusi; Emanuela Longa; Rossana Tonlorenzi; Martina Ragazzi; Giorgia Calderazzi; Hidetoshi Hoshiya; Ornella Cappellari; Marina Mora; Benedikt Schoser; Peter Schneiderat; Mitsuo Oshimura; Roberto Bottinelli; Maurilio Sampaolesi; Yvan Torrente; Vania Broccoli; Giulio Cossu

Genetically corrected mesoangioblasts from human iPSCs derived from limb-girdle muscular dystrophy patients produce muscle fibers expressing the therapeutic gene in a mouse model of the disease. Muscle Progenitors Find Their Way Home Muscular dystrophies are genetic disorders primarily affecting skeletal muscle that result in greatly impaired mobility and, in severe cases, respiratory and cardiac dysfunction. There is no effective treatment, although several new approaches are entering clinical testing including cell therapy. Cell therapy aims to replace lost muscle fibers by transplanting healthy donor muscle progenitor cells or cells from dystrophic patients that have been genetically corrected in vitro. Mesoangioblasts are progenitor cells from blood vessel walls that have shown potential as a cell therapy in animal models of muscular dystrophy. In a new study, Tedesco et al. explore whether genetically corrected mesoangioblasts from patients with limb-girdle muscular dystrophy 2D (LGMD2D) have potential as an autologous cell therapy to treat this disease. The authors quickly found that they could not derive a sufficient number of mesoangioblasts from LGMD2D patients because the muscles of the patients were depleted of these progenitor cells. To overcome this problem, the authors reprogrammed fibroblasts or myoblasts from the LGMD2D patients to obtain human induced pluripotent stem cells (iPSCs) and induced them to differentiate into mesoangioblast-like cells that were then genetically corrected in vitro using a viral vector expressing the defective gene SGCA, which encodes α-sarcoglycan. After intramuscular or intra-arterial injection of these genetically corrected, iPSC-derived mesoangioblasts into mice with LGMD2D (immune-deficient Sgca-null mice), the cells homed to damaged mouse skeletal muscle, engrafted, and formed muscle fibers expressing α-sarcoglycan. Using mouse iPSC-derived mesoangioblasts, the researchers showed that the transplanted engrafted cells imbued muscle with greater strength and enabled the dystrophic mice to run for longer on a treadmill than dystrophic mice that did not receive the cells. This strategy offers the advantage of being able to produce unlimited numbers of genetically corrected progenitor cells, which perhaps could be used in the future as cell therapy for treating LGMD2D and other forms of muscular dystrophy. Mesoangioblasts are stem/progenitor cells derived from a subset of pericytes found in muscle that express alkaline phosphatase. They have been shown to ameliorate the disease phenotypes of different animal models of muscular dystrophy and are now undergoing clinical testing in children affected by Duchenne’s muscular dystrophy. Here, we show that patients with a related disease, limb-girdle muscular dystrophy 2D (LGMD2D), which is caused by mutations in the gene encoding α-sarcoglycan, have reduced numbers of this pericyte subset and thus produce too few mesoangioblasts for use in autologous cell therapy. Hence, we reprogrammed fibroblasts and myoblasts from LGMD2D patients to generate human induced pluripotent stem cells (iPSCs) and developed a protocol for the derivation of mesoangioblast-like cells from these iPSCs. The iPSC-derived mesoangioblasts were expanded and genetically corrected in vitro with a lentiviral vector carrying the gene encoding human α-sarcoglycan and a promoter that would ensure expression only in striated muscle. When these genetically corrected human iPSC-derived mesoangioblasts were transplanted into α-sarcoglycan–null immunodeficient mice, they generated muscle fibers that expressed α-sarcoglycan. Finally, transplantation of mouse iPSC-derived mesoangioblasts into α-sarcoglycan–null immunodeficient mice resulted in functional amelioration of the dystrophic phenotype and restoration of the depleted progenitors. These findings suggest that transplantation of genetically corrected mesoangioblast-like cells generated from iPSCs from LGMD2D patients may be useful for treating this type of muscular dystrophy and perhaps other forms of muscular dystrophy as well.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells

Chiara Bonini; Zulma Magnani; Fabrizia Urbinati; Daniela Sartori; Sara Muraro; Enrico Tagliafico; Attilio Bondanza; Maria Teresa Lupo Stanghellini; Massimo Bernardi; Alessandra Pescarollo; Fabio Ciceri; Claudio Bordignon; Fulvio Mavilio

The use of retroviral vectors in gene therapy has raised safety concerns for the genotoxic risk associated with their uncontrolled insertion into the human genome. We have analyzed the consequences of retroviral transduction in T cells from leukemic patients treated with allogeneic stem cell transplantation and donor lymphocytes genetically modified with a suicide gene (HSV-TK). Retroviral vectors integrate preferentially within or near transcribed regions of the genome, with a preference for sequences around promoters and for genes active in T cells at the time of transduction. Quantitative transcript analysis shows that one fifth of these integrations affect the expression of nearby genes. However, transduced T cell populations maintain remarkably stable gene expression profiles, phenotype, biological functions, and immune repertoire in vivo, with no evidence of clonal selection up to 9 yr after administration. Analysis of integrated proviruses in transduced cells before and after transplantation indicates that integrations interfering with normal T cell function are more likely to lead to clonal ablation than expansion in vivo. Despite the potentially dangerous interactions with the T cell genome, retroviral integration has therefore little consequence on the safety and efficacy of T cell transplantation.


Cancer Research | 2007

Gene Expression Analysis of Angioimmunoblastic Lymphoma Indicates Derivation from T Follicular Helper Cells and Vascular Endothelial Growth Factor Deregulation

Pier Paolo Piccaluga; Claudio Agostinelli; Antonino Carbone; Luca Isaia Fantoni; Sergio Ferrari; Anna Gazzola; Annunziata Gloghini; Simona Righi; Maura Rossi; Enrico Tagliafico; Pier Luigi Zinzani; Simonetta Zupo; Michele Baccarani; Stefano Pileri

Angioimmunoblastic lymphoma (AILT) is the second most common subtype of peripheral T-cell lymphoma (PTCL) and is characterized by dismal prognosis. Thus far, only a few studies have dealt with its molecular pathogenesis. We performed gene expression profile (GEP) analysis of six AILT, six anaplastic large cell lymphomas (ALCL), 28 PTCL-unspecified (PTCL/U), and 20 samples of normal T lymphocytes (including CD4(+), CD8(+), and activated and resting subpopulations), aiming to (a) assess the relationship of AILT with other PTCLs, (b) establish the relationship between AILT and normal T-cell subsets, and (c) recognize the cellular programs deregulated in AILT possibly looking for novel potential therapeutic targets. First, we found that AILT and other PTCLs have rather similar GEP, possibly sharing common oncogenic pathways. Second, we found that AILTs are closer to activated CD4(+), rather than to resting or CD8(+) lymphocytes. Furthermore, we found that the molecular signature of follicular T helper cells was significantly overexpressed in AILT, reinforcing the idea that AILT may arise from such cellular counterpart. Finally, we identified several genes deregulated in AILT, including PDGFRA, REL, and VEGF. The expression of several molecules was then studied by immunohistochemistry on tissue microarrays containing 45 independent AILT cases. Notably, we found that the vascular endothelial growth factor (VEGF) was expressed not only by reactive cells, but also by neoplastic cells, and that nuclear factor-kappaB (NF-kappaB) activation is uncommon in AILT, as suggested by frequent exclusively cytoplasmic c-REL localization. Our study provides new relevant information on AILT biology and new candidates for possible therapeutic targets such as PDGFRA (platelet-derived growth factor alpha) and VEGF.


Haematologica | 2010

Polarization dictates iron handling by inflammatory and alternatively activated macrophages

Gianfranca Corna; Lara Campana; Emanuele Pignatti; Alessandra Castiglioni; Enrico Tagliafico; Lidia Bosurgi; Alessandro Campanella; Silvia Brunelli; Angelo A. Manfredi; Pietro Apostoli; Laura Silvestri; Clara Camaschella; Patrizia Rovere-Querini

Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).


Cell | 2010

Nfix Regulates Fetal-Specific Transcription in Developing Skeletal Muscle

Graziella Messina; Stefano Biressi; Stefania Monteverde; Alessandro Magli; Marco Cassano; Laura Perani; Elena Roncaglia; Enrico Tagliafico; Linda M. Starnes; Christine E. Campbell; Milena Grossi; David J. Goldhamer; Richard M. Gronostajski; Giulio Cossu

Skeletal myogenesis, like hematopoiesis, occurs in successive developmental stages that involve different cell populations and expression of different genes. We show here that the transcription factor nuclear factor one X (Nfix), whose expression is activated by Pax7 in fetal muscle, in turn activates the transcription of fetal specific genes such as MCK and beta-enolase while repressing embryonic genes such as slow myosin. In the case of the MCK promoter, Nfix forms a complex with PKC theta that binds, phosphorylates, and activates MEF2A. Premature expression of Nfix activates fetal and suppresses embryonic genes in embryonic muscle, whereas muscle-specific ablation of Nfix prevents fetal and maintains embryonic gene expression in the fetus. Therefore, Nfix acts as a transcriptional switch from embryonic to fetal myogenesis.


Stem cell reports | 2016

No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels

Benedetto Sacchetti; Alessia Funari; Cristina Remoli; Giuseppe Giannicola; Gesine Kögler; Stefanie Liedtke; Giulio Cossu; Marta Serafini; Maurilio Sampaolesi; Enrico Tagliafico; Elena Tenedini; Isabella Saggio; Pamela Gehron Robey; Mara Riminucci; Paolo Bianco

Summary A widely shared view reads that mesenchymal stem/stromal cells (“MSCs”) are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as “MSCs” based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called “MSCs,” with important applicative implications. The data also support the view that rather than a uniform class of “MSCs,” different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.


Circulation Research | 2004

Msx2 and Necdin Combined Activities Are Required for Smooth Muscle Differentiation in Mesoangioblast Stem Cells

Silvia Brunelli; Enrico Tagliafico; Fernanda Gabriella De Angelis; Rossana Tonlorenzi; Silvia Baesso; Sergio Ferrari; Michio Niinobe; Kazuaki Yoshikawa; Robert J. Schwartz; Irene Bozzoni; Stefano Ferrari; Giulio Cossu

Little is known about the molecular mechanism underlying specification and differentiation of smooth muscle (SM), and this is, at least in part, because of the few cellular systems available to study the acquisition of a SM phenotype in vitro. Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm, including SM. We performed a DNA microarray analysis of a mesoangioblast clone that spontaneously expresses an immature SM phenotype and compared it with a sister clone mainly composed of undifferentiated progenitor cells. This study allowed us to define a gene expression profile for “stem” cells versus smooth muscle cells (SMCs) in the absence of differentiation inducers such as transforming growth factor β. Two transcription factors, msx2 and necdin, are expressed at least 100 times more in SMCs than in stem cells, are coexpressed in all SMCs and tissues, are induced by transforming growth factor β, and, when coexpressed, induce a number of SM markers in mesoangioblast, fibroblast, and endothelial cell lines. Conversely, their downregulation through RNA interference results in a decreased expression of SM markers. These data support the hypothesis that Msx2 and necdin act as master genes regulating SM differentiation in at least a subset of SMCs.


Blood | 2014

miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis

Ruggiero Norfo; Roberta Zini; Valentina Pennucci; Elisa Bianchi; Simona Salati; Paola Guglielmelli; Costanza Bogani; Tiziana Fanelli; Carmela Mannarelli; Vittorio Rosti; Daniela Pietra; Silvia Salmoiraghi; Andrea Bisognin; Samantha Ruberti; Sebastiano Rontauroli; Giorgia Sacchi; Zelia Prudente; Giovanni Barosi; Mario Cazzola; Alessandro Rambaldi; Stefania Bortoluzzi; Sergio Ferrari; Enrico Tagliafico; Alessandro M. Vannucchi; Rossella Manfredini

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF.


Blood | 2010

c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression

Elisa Bianchi; Roberta Zini; Simona Salati; Elena Tenedini; Ruggiero Norfo; Enrico Tagliafico; Rossella Manfredini; Sergio Ferrari

The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.

Collaboration


Dive into the Enrico Tagliafico's collaboration.

Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elena Tenedini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Alexis Grande

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Bianchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Roberta Zini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Simona Salati

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabella Bernardis

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge