Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simone M. Rowley is active.

Publication


Featured researches published by Simone M. Rowley.


PLOS Genetics | 2012

Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

Ella R. Thompson; Maria A. Doyle; Georgina L. Ryland; Simone M. Rowley; David Y. H. Choong; Richard W. Tothill; Heather Thorne; kConFab; Daniel R. Barnes; Jason Li; Jason Ellul; Gayle Philip; Yoland C. Antill; Paul A. James; Alison H. Trainer; Gillian Mitchell; Ian G. Campbell

Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.


Annals of Neurology | 2012

FXN methylation predicts expression and clinical outcome in Friedreich ataxia

Marguerite V. Evans-Galea; Nissa Carrodus; Simone M. Rowley; Louise A. Corben; Geneieve Tai; Richard Saffery; John C. Galati; Nicholas C. Wong; Jeffrey M. Craig; David R. Lynch; Sean R. Regner; Alicia Brocht; Susan Perlman; Khalaf Bushara; Christopher M. Gomez; George Wilmot; Lingli Li; Elizabeth Varley; Martin B. Delatycki; Joseph P. Sarsero

Friedreich ataxia (FA) is the most common ataxia and results from an expanded GAA repeat in the first intron of FXN. This leads to epigenetic modifications and reduced frataxin. We investigated the relationships between genetic, epigenetic, and clinical parameters in a large case–control study of FA.


Journal of Clinical Oncology | 2016

Panel Testing for Familial Breast Cancer: Calibrating the Tension Between Research and Clinical Care

Ella R. Thompson; Simone M. Rowley; Na Li; Simone McInerny; Lisa Devereux; Michelle W. Wong-Brown; Alison H. Trainer; Gillian Mitchell; Rodney J. Scott; Paul A. James; Ian G. Campbell

PURPOSE Gene panel sequencing is revolutionizing germline risk assessment for hereditary breast cancer. Despite scant evidence supporting the role of many of these genes in breast cancer predisposition, results are often reported to families as the definitive explanation for their family history. We assessed the frequency of mutations in 18 genes included in hereditary breast cancer panels among index cases from families with breast cancer and matched population controls. PATIENTS AND METHODS Cases (n = 2,000) were predominantly breast cancer-affected women referred to specialized Familial Cancer Centers on the basis of a strong family history of breast cancer and BRCA1 and BRCA2 wild type. Controls (n = 1,997) were cancer-free women from the LifePool study. Sequencing data were filtered for known pathogenic or novel loss-of-function mutations. RESULTS Excluding 19 mutations identified in BRCA1 and BRCA2 among the cases and controls, a total of 78 cases (3.9%) and 33 controls (1.6%) were found to carry potentially actionable mutations. A significant excess of mutations was only observed for PALB2 (26 cases, four controls) and TP53 (five cases, zero controls), whereas no mutations were identified in STK11. Among the remaining genes, loss-of-function mutations were rare, with similar frequency between cases and controls. CONCLUSION The frequency of mutations in most breast cancer panel genes among individuals selected for possible hereditary breast cancer is low and, in many cases, similar or even lower than that observed among cancer-free population controls. Although multigene panels can significantly aid in cancer risk management and expedite clinical translation of new genes, they equally have the potential to provide clinical misinformation and harm at the individual level if the data are not interpreted cautiously.


The Journal of Pathology | 2013

RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary

Georgina L. Ryland; Sally M. Hunter; Maria A. Doyle; Simone M. Rowley; Michael Christie; Prue E. Allan; David Bowtell; Kylie L. Gorringe; Ian G. Campbell

Mucinous carcinomas represent a distinct morphological subtype which can arise from several organ sites, including the ovary, and their genetic characteristics are largely under‐described. Exome sequencing of 12 primary mucinous ovarian tumours identified RNF43 as the most frequently somatically mutated novel gene, secondary to KRAS and mutated at a frequency equal to that of TP53 and BRAF. Further screening of RNF43 in a larger cohort of ovarian tumours identified additional mutations, with a total frequency of 2/22 (9%) in mucinous ovarian borderline tumours and 6/29 (21%) in mucinous ovarian carcinomas. Seven mutations were predicted to truncate the protein and one missense mutation was predicted to be deleterious by in silico analysis. Six tumours had allelic imbalance at the RNF43 locus, with loss of the wild‐type allele. The mutation spectrum strongly suggests that RNF43 is an important tumour suppressor gene in mucinous ovarian tumours, similar to its reported role in mucinous pancreatic precancerous cysts. Copyright


Genome Medicine | 2015

Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors.

Georgina L. Ryland; Sally M. Hunter; Maria A. Doyle; Franco Caramia; Jason Li; Simone M. Rowley; Michael Christie; Prue E. Allan; Andrew N. Stephens; David Bowtell; Ian G. Campbell; Kylie L. Gorringe

Mucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies performed to date. To understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons 4–9 of TP53. The predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5. The diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group of tumors that is generally distinct from other ovarian subtypes.BackgroundMucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies performed to date.MethodsTo understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons 4–9 of TP53.ResultsThe predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5.ConclusionsThe diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group of tumors that is generally distinct from other ovarian subtypes.


Oncotarget | 2015

Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes

Sally M. Hunter; Michael S. Anglesio; Georgina L. Ryland; Raghwa Sharma; Yoke-Eng Chiew; Simone M. Rowley; Maria A. Doyle; Jason Li; C. Blake Gilks; Phillip Moss; Prue E. Allan; Andrew N. Stephens; David Huntsman; Anna deFazio; David Bowtell; Kylie L. Gorringe; Ian G. Campbell

Low grade serous ovarian tumours are a rare and under-characterised histological subtype of epithelial ovarian tumours, with little known of the molecular drivers and facilitators of tumorigenesis beyond classic oncogenic RAS/RAF mutations. With a move towards targeted therapies due to the chemoresistant nature of this subtype, it is pertinent to more fully characterise the genetic events driving this tumour type, some of which may influence response to therapy and/or development of drug resistance. We performed genome-wide high-resolution genomic copy number analysis (Affymetrix SNP6.0) and mutation hotspot screening (KRAS, BRAF, NRAS, HRAS, ERBB2 and TP53) to compare a large cohort of ovarian serous borderline tumours (SBTs, n = 57) with low grade serous carcinomas (LGSCs, n = 19). Whole exome sequencing was performed for 13 SBTs, nine LGSCs and one mixed low/high grade carcinoma. Copy number aberrations were detected in 61% (35/57) of SBTs, compared to 100% (19/19) of LGSCs. Oncogenic RAS/RAF/ERBB2 mutations were detected in 82.5% (47/57) of SBTs compared to 63% (12/19) of LGSCs, with NRAS mutations detected only in LGSC. Some copy number aberrations appeared to be enriched in LGSC, most significantly loss of 9p and homozygous deletions of the CDKN2A/2B locus. Exome sequencing identified BRAF, KRAS, NRAS, USP9X and EIF1AX as the most frequently mutated genes. We have identified markers of progression from borderline to LGSC and novel drivers of LGSC. USP9X and EIF1AX have both been linked to regulation of mTOR, suggesting that mTOR inhibitors may be a key companion treatment for targeted therapy trials of MEK and RAF inhibitors.


Clinical Cancer Research | 2012

Pre-Invasive Ovarian Mucinous Tumors Are Characterized by CDKN2A and RAS Pathway Aberrations

Sally M. Hunter; Kylie L. Gorringe; Michael Christie; Simone M. Rowley; David Bowtell; Ian G. Campbell

Introduction: Mucinous tumors are the second most common form of epithelial ovarian tumor, yet the cell of origin for this histologic subtype remains undetermined. Although these tumors are thought to arise through a stepwise progression from benign cystadenoma to borderline tumor to invasive carcinoma, few studies have attempted to comprehensively characterize the genetic changes specific to this subtype or its precursors. Methods: To explore the spectrum of genomic alterations common to mucinous tumors we carried out high-resolution genome-wide copy number analysis, mutation screening by Sanger sequencing and immunohistochemistry on a series of primary ovarian mucinous cystadenomas (n = 20) and borderline tumors (n = 22). Results: Integration of copy number data, targeted mutation screening of RAS/RAF pathway members and immunohistochemistry reveals that p16 loss and RAS/RAF pathway alterations are highly recurrent events that occur early during mucinous tumor development. The frequency of concurrence of these events was observed in 40% of benign cystadenomas and 68% of borderline tumors. Conclusions: This study is the largest and highest resolution analysis of mucinous benign and borderline tumors carried out to date and provides strong support for these lesions being precursors of primary ovarian mucinous adenocarcinoma. The high level of uniformity in the molecular events underlying the pathogenesis of mucinous ovarian tumors provides an opportunity for treatments targeting specific mutations and pathways. Clin Cancer Res; 18(19); 5267–77. ©2012 AACR.


PLOS ONE | 2012

MicroRNA Genes and Their Target 3′-Untranslated Regions Are Infrequently Somatically Mutated in Ovarian Cancers

Georgina L. Ryland; Jennifer L. Bearfoot; Maria A. Doyle; Samantha E. Boyle; David Y. H. Choong; Simone M. Rowley; Richard W. Tothill; Kylie L. Gorringe; Ian G. Campbell

MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3′-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3′-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3′-untranslated regions are thus uncommon in ovarian cancer.


Genome Medicine | 2013

A simple consensus approach improves somatic mutation prediction accuracy

David L. Goode; Sally M. Hunter; Maria A. Doyle; Tao Ma; Simone M. Rowley; David Y. H. Choong; Georgina L. Ryland; Ian G. Campbell

Differentiating true somatic mutations from artifacts in massively parallel sequencing data is an immense challenge. To develop methods for optimal somatic mutation detection and to identify factors influencing somatic mutation prediction accuracy, we validated predictions from three somatic mutation detection algorithms, MuTect, JointSNVMix2 and SomaticSniper, by Sanger sequencing. Full consensus predictions had a validation rate of >98%, but some partial consensus predictions validated too. In cases of partial consensus, read depth and mapping quality data, along with additional prediction methods, aided in removing inaccurate predictions. Our consensus approach is fast, flexible and provides a high-confidence list of putative somatic mutations.


PLOS ONE | 2013

Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer.

Ella R. Thompson; Simone M. Rowley; Sarah Sawyer; kConFab; Diana Eccles; Alison H. Trainer; Gillian Mitchell; Paul A. James; Ian G. Campbell

Mutations in RAD51D have been associated with an increased risk of hereditary ovarian cancer and although they have been observed in the context of breast and ovarian cancer families, the association with breast cancer is unclear. The aim of this current study was to validate the reported association of RAD51D with ovarian cancer and assess for an association with breast cancer. We screened for RAD51D mutations in BRCA1/2 mutation-negative index cases from 1,060 familial breast and/or ovarian cancer families (including 741 affected by breast cancer only) and in 245 unselected ovarian cancer cases. Exons containing novel non-synonymous variants were screened in 466 controls. Two overtly deleterious RAD51D mutations were identified among the unselected ovarian cancers cases (0.82%) but none were detected among the 1,060 families. Our data provide additional evidence that RAD51D mutations are enriched among ovarian cancer patients, but are extremely rare among familial breast cancer patients.

Collaboration


Dive into the Simone M. Rowley's collaboration.

Top Co-Authors

Avatar

Ian G. Campbell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Kylie L. Gorringe

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Jason Li

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Paul A. James

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ella R. Thompson

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Georgina L. Ryland

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Maria A. Doyle

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Sally M. Hunter

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Lisa Devereux

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge