Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sally M. Hunter is active.

Publication


Featured researches published by Sally M. Hunter.


The Journal of Pathology | 2013

RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary

Georgina L. Ryland; Sally M. Hunter; Maria A. Doyle; Simone M. Rowley; Michael Christie; Prue E. Allan; David Bowtell; Kylie L. Gorringe; Ian G. Campbell

Mucinous carcinomas represent a distinct morphological subtype which can arise from several organ sites, including the ovary, and their genetic characteristics are largely under‐described. Exome sequencing of 12 primary mucinous ovarian tumours identified RNF43 as the most frequently somatically mutated novel gene, secondary to KRAS and mutated at a frequency equal to that of TP53 and BRAF. Further screening of RNF43 in a larger cohort of ovarian tumours identified additional mutations, with a total frequency of 2/22 (9%) in mucinous ovarian borderline tumours and 6/29 (21%) in mucinous ovarian carcinomas. Seven mutations were predicted to truncate the protein and one missense mutation was predicted to be deleterious by in silico analysis. Six tumours had allelic imbalance at the RNF43 locus, with loss of the wild‐type allele. The mutation spectrum strongly suggests that RNF43 is an important tumour suppressor gene in mucinous ovarian tumours, similar to its reported role in mucinous pancreatic precancerous cysts. Copyright


Genome Medicine | 2015

Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors.

Georgina L. Ryland; Sally M. Hunter; Maria A. Doyle; Franco Caramia; Jason Li; Simone M. Rowley; Michael Christie; Prue E. Allan; Andrew N. Stephens; David Bowtell; Ian G. Campbell; Kylie L. Gorringe

Mucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies performed to date. To understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons 4–9 of TP53. The predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5. The diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group of tumors that is generally distinct from other ovarian subtypes.BackgroundMucinous ovarian tumors are an unusual group of rare neoplasms with an apparently clear progression from benign to borderline to carcinoma, yet with a controversial cell of origin in the ovarian surface epithelium. They are thought to be molecularly distinct from other ovarian tumors but there have been no exome-level sequencing studies performed to date.MethodsTo understand the genetic etiology of mucinous ovarian tumors and assess the presence of novel therapeutic targets or pathways, we undertook exome sequencing of 24 tumors encompassing benign (5), borderline (8) and carcinoma (11) histologies and also assessed a validation cohort of 58 tumors for specific gene regions including exons 4–9 of TP53.ResultsThe predominant mutational signature was of C>T transitions in a NpCpG context, indicative of deamination of methyl-cytosines. As well as mutations in known drivers (KRAS, BRAF and CDKN2A), we identified a high percentage of carcinomas with TP53 mutations (52 %), and recurrent mutations in RNF43, ELF3, GNAS, ERBB3 and KLF5.ConclusionsThe diversity of mutational targets suggests multiple routes to tumorigenesis in this heterogeneous group of tumors that is generally distinct from other ovarian subtypes.


BMC Genomics | 2014

Inferring copy number and genotype in tumour exome data.

Kaushalya C. Amarasinghe; Jason Li; Sally M. Hunter; Georgina L. Ryland; Prue Cowin; Ian G. Campbell; Saman K. Halgamuge

BackgroundUsing whole exome sequencing to predict aberrations in tumours is a cost effective alternative to whole genome sequencing, however is predominantly used for variant detection and infrequently utilised for detection of somatic copy number variation.ResultsWe propose a new method to infer copy number and genotypes using whole exome data from paired tumour/normal samples. Our algorithm uses two Hidden Markov Models to predict copy number and genotypes and computationally resolves polyploidy/aneuploidy, normal cell contamination and signal baseline shift. Our method makes explicit detection on chromosome arm level events, which are commonly found in tumour samples. The methods are combined into a package named ADTEx (Aberration Detection in Tumour Exome). We applied our algorithm to a cohort of 17 in-house generated and 18 TCGA paired ovarian cancer/normal exomes and evaluated the performance by comparing against the copy number variations and genotypes predicted using Affymetrix SNP 6.0 data of the same samples. Further, we carried out a comparison study to show that ADTEx outperformed its competitors in terms of precision and F-measure.ConclusionsOur proposed method, ADTEx, uses both depth of coverage ratios and B allele frequencies calculated from whole exome sequencing data, to predict copy number variations along with their genotypes. ADTEx is implemented as a user friendly software package using Python and R statistical language. Source code and sample data are freely available under GNU license (GPLv3) at http://adtex.sourceforge.net/.


Oncotarget | 2015

Molecular profiling of low grade serous ovarian tumours identifies novel candidate driver genes

Sally M. Hunter; Michael S. Anglesio; Georgina L. Ryland; Raghwa Sharma; Yoke-Eng Chiew; Simone M. Rowley; Maria A. Doyle; Jason Li; C. Blake Gilks; Phillip Moss; Prue E. Allan; Andrew N. Stephens; David Huntsman; Anna deFazio; David Bowtell; Kylie L. Gorringe; Ian G. Campbell

Low grade serous ovarian tumours are a rare and under-characterised histological subtype of epithelial ovarian tumours, with little known of the molecular drivers and facilitators of tumorigenesis beyond classic oncogenic RAS/RAF mutations. With a move towards targeted therapies due to the chemoresistant nature of this subtype, it is pertinent to more fully characterise the genetic events driving this tumour type, some of which may influence response to therapy and/or development of drug resistance. We performed genome-wide high-resolution genomic copy number analysis (Affymetrix SNP6.0) and mutation hotspot screening (KRAS, BRAF, NRAS, HRAS, ERBB2 and TP53) to compare a large cohort of ovarian serous borderline tumours (SBTs, n = 57) with low grade serous carcinomas (LGSCs, n = 19). Whole exome sequencing was performed for 13 SBTs, nine LGSCs and one mixed low/high grade carcinoma. Copy number aberrations were detected in 61% (35/57) of SBTs, compared to 100% (19/19) of LGSCs. Oncogenic RAS/RAF/ERBB2 mutations were detected in 82.5% (47/57) of SBTs compared to 63% (12/19) of LGSCs, with NRAS mutations detected only in LGSC. Some copy number aberrations appeared to be enriched in LGSC, most significantly loss of 9p and homozygous deletions of the CDKN2A/2B locus. Exome sequencing identified BRAF, KRAS, NRAS, USP9X and EIF1AX as the most frequently mutated genes. We have identified markers of progression from borderline to LGSC and novel drivers of LGSC. USP9X and EIF1AX have both been linked to regulation of mTOR, suggesting that mTOR inhibitors may be a key companion treatment for targeted therapy trials of MEK and RAF inhibitors.


Clinical Cancer Research | 2014

Genomic Classification of Serous Ovarian Cancer with Adjacent Borderline Differentiates RAS Pathway and TP53-Mutant Tumors and Identifies NRAS as an Oncogenic Driver

Catherine Emmanuel; Yoke-Eng Chiew; Joshy George; Dariush Etemadmoghadam; Michael S. Anglesio; Raghwa Sharma; Peter Russell; Catherine L. Kennedy; Sian Fereday; Jillian Hung; Laura Galletta; Russell Hogg; Gerard Wain; Alison Brand; Rosemary L. Balleine; Laura E. MacConaill; Emanuele Palescandolo; Sally M. Hunter; Ian G. Campbell; Alexander Dobrovic; Stephen Q. Wong; Hongdo Do; Christine L. Clarke; Paul Harnett; David Bowtell; Anna deFazio

Purpose: Low-grade serous ovarian carcinomas (LGSC) are Ras pathway-mutated, TP53 wild-type, and frequently associated with borderline tumors. Patients with LGSCs respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with grade 2 or 3 carcinoma was an indicator of Ras mutation, and we explored the molecular relationship between coexisting invasive and borderline histologies. Experimental Design: We reviewed >1,200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses, including candidate mutation screening, copy number, and gene expression profiling. Results: We found a similar frequency of low, moderate, and high-grade carcinomas with coexisting borderline histology. BRAF/KRAS alterations were common in LGSC; however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Coexisting borderline and invasive components showed nearly identical genomic profiles. Grade 2 cases with coexisting borderline included tumors with molecular features of LGSC, whereas others were typical of HGSC. However, all grade 3 carcinomas with coexisting borderline histology were molecularly indistinguishable from typical HGSC. Conclusion: Our findings suggest that NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents. Clin Cancer Res; 20(24); 6618–30. ©2014 AACR.


European Urology | 2015

Patient-derived Xenografts Reveal that Intraductal Carcinoma of the Prostate Is a Prominent Pathology in BRCA2 Mutation Carriers with Prostate Cancer and Correlates with Poor Prognosis

Gail P. Risbridger; Renea A. Taylor; David Clouston; Ania Sliwinski; Heather Thorne; Sally M. Hunter; Jason Li; Gillian Mitchell; Declan Murphy; Mark Frydenberg; David Pook; John Pedersen; Roxanne Toivanen; Hong Wang; Melissa Papargiris; Mitchell G. Lawrence; Damien Bolton

BACKGROUND Intraductal carcinoma of the prostate (IDC-P) is a distinct clinicopathologic entity associated with aggressive prostate cancer (PCa). PCa patients carrying a breast cancer 2, early onset (BRCA2) germline mutation exhibit highly aggressive tumours with poor prognosis. OBJECTIVE To investigate the presence and implications of IDC-P in men with a strong family history of PCa who either carry a BRCA2 pathogenic mutation or do not carry the mutation (BRCAX). DESIGN, SETTING, AND PARTICIPANTS Patient-derived xenografts (PDXs) were generated from three germline BRCA2 mutation carriers and one BRCAX patient. Specimens were examined for histologic evidence of IDC-P. Whole-genome copy number analysis (WG-CNA) was performed on IDC-P from a primary and a matched PDX specimen. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The incidence of IDC-P and association with overall survival for BRCA2 and BRCAX patients were determined using Kaplan-Meier analysis. RESULTS AND LIMITATIONS PDXs from BRCA2 tumours showed increased incidence of IDC-P compared with sporadic PCa (p=0.015). WG-CNA confirmed that the genetic profile of IDC-P from a matched (primary and PDX) BRCA2 tumour was similar. The incidence of IDC-P was significantly increased in BRCA2 carriers (42%, n=33, p=0.004) but not in BRCAX patients (25.8%, n=62, p=0.102) when both groups were compared with sporadic cases (9%, n=32). BRCA2 carriers and BRCAX patients with IDC-P had significantly worse overall and PCa-specific survival compared with BRCA2 carriers and BRCAX patients without IDC-P (hazard ratio [HR]: 16.9, p=0.0064 and HR: 3.57, p=0.0086, respectively). CONCLUSIONS PDXs revealed IDC-P in patients with germline BRCA2 mutations or BRCAX classification, identifying aggressive tumours with poor survival even when the stage and grade of cancer at diagnosis were similar. Further studies of the prognostic significance of IDC-P in sporadic PCa are warranted. PATIENT SUMMARY Intraductal carcinoma of the prostate is common in patients with familial prostate cancer and is associated with poor outcomes. This finding affects genetic counselling and identifies patients in whom earlier multimodality treatment may be required.


Clinical Cancer Research | 2012

Pre-Invasive Ovarian Mucinous Tumors Are Characterized by CDKN2A and RAS Pathway Aberrations

Sally M. Hunter; Kylie L. Gorringe; Michael Christie; Simone M. Rowley; David Bowtell; Ian G. Campbell

Introduction: Mucinous tumors are the second most common form of epithelial ovarian tumor, yet the cell of origin for this histologic subtype remains undetermined. Although these tumors are thought to arise through a stepwise progression from benign cystadenoma to borderline tumor to invasive carcinoma, few studies have attempted to comprehensively characterize the genetic changes specific to this subtype or its precursors. Methods: To explore the spectrum of genomic alterations common to mucinous tumors we carried out high-resolution genome-wide copy number analysis, mutation screening by Sanger sequencing and immunohistochemistry on a series of primary ovarian mucinous cystadenomas (n = 20) and borderline tumors (n = 22). Results: Integration of copy number data, targeted mutation screening of RAS/RAF pathway members and immunohistochemistry reveals that p16 loss and RAS/RAF pathway alterations are highly recurrent events that occur early during mucinous tumor development. The frequency of concurrence of these events was observed in 40% of benign cystadenomas and 68% of borderline tumors. Conclusions: This study is the largest and highest resolution analysis of mucinous benign and borderline tumors carried out to date and provides strong support for these lesions being precursors of primary ovarian mucinous adenocarcinoma. The high level of uniformity in the molecular events underlying the pathogenesis of mucinous ovarian tumors provides an opportunity for treatments targeting specific mutations and pathways. Clin Cancer Res; 18(19); 5267–77. ©2012 AACR.


Genome Medicine | 2013

A simple consensus approach improves somatic mutation prediction accuracy

David L. Goode; Sally M. Hunter; Maria A. Doyle; Tao Ma; Simone M. Rowley; David Y. H. Choong; Georgina L. Ryland; Ian G. Campbell

Differentiating true somatic mutations from artifacts in massively parallel sequencing data is an immense challenge. To develop methods for optimal somatic mutation detection and to identify factors influencing somatic mutation prediction accuracy, we validated predictions from three somatic mutation detection algorithms, MuTect, JointSNVMix2 and SomaticSniper, by Sanger sequencing. Full consensus predictions had a validation rate of >98%, but some partial consensus predictions validated too. In cases of partial consensus, read depth and mapping quality data, along with additional prediction methods, aided in removing inaccurate predictions. Our consensus approach is fast, flexible and provides a high-confidence list of putative somatic mutations.


PLOS ONE | 2014

Bioinformatics pipelines for targeted resequencing and whole-exome sequencing of human and mouse genomes: a virtual appliance approach for instant deployment.

Jason Li; Maria A. Doyle; Isaam Saeed; Stephen Q. Wong; Victoria Mar; David L. Goode; Franco Caramia; Ken Doig; Georgina L. Ryland; Ella R. Thompson; Sally M. Hunter; Saman K. Halgamuge; Jason Ellul; Alexander Dobrovic; Ian G. Campbell; Anthony T. Papenfuss; Grant A. McArthur; Richard W. Tothill

Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed TREVA (Targeted REsequencing Virtual Appliance), making pre-built pipelines immediately available as a virtual appliance. Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include: somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing), enabling instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.org/treva/.


Modern Pathology | 2015

Copy number analysis of ductal carcinoma in situ with and without recurrence.

Kylie L. Gorringe; Sally M. Hunter; Jia-Min Pang; Ken Opeskin; Prue Hill; Simone M. Rowley; David Y. H. Choong; Ella R. Thompson; Alexander Dobrovic; Stephen B. Fox; G. Bruce Mann; Ian G. Campbell

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer and a frequent mammographic finding requiring treatment. Up to 25% of DCIS can recur and half of recurrences are invasive, but there are no reliable biomarkers for recurrence. We hypothesised that copy number aberrations could predict likelihood of recurrence. We analysed a cohort of pure DCIS cases treated only with wide local excision for genome-wide copy number and loss of heterozygosity using Affymetrix OncoScan MIP arrays. Cases included those without recurrence within 7 years (n=25) and with recurrence between 1 and 5 years after diagnosis (n=15). Pure DCIS were broadly similar in copy number changes compared with invasive breast cancer, with the consistent exception of a greater frequency of ERBB2 amplification in DCIS. There were no significant differences in age or ER status between the cases with a recurrence vs those without. Overall, the DCIS cases with recurrence had more copy number events than the DCIS without recurrence. The increased copy number appeared non-random with several genomic regions showing an increase in frequency in recurrent cases, including 20q gain, ERBB2 amplification and 15q loss. Copy number changes may provide prognostic information for DCIS recurrence, but validation in additional cohorts is required.

Collaboration


Dive into the Sally M. Hunter's collaboration.

Top Co-Authors

Avatar

Ian G. Campbell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Kylie L. Gorringe

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Georgina L. Ryland

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Simone M. Rowley

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

David Bowtell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Jason Li

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Anglesio

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Maria A. Doyle

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge