Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where SinChun Lim is active.

Publication


Featured researches published by SinChun Lim.


Journal of Experimental Medicine | 2012

The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease

Lin W. Hung; Victor L. Villemagne; Lesley Cheng; Nicki A. Sherratt; Scott Ayton; Anthony R. White; Peter J. Crouch; SinChun Lim; Su Ling Leong; Simon Wilkins; Jessica L. George; Blaine R. Roberts; Chi L. L. Pham; Xiang Liu; Francis Chi Keung Chiu; David M. Shackleford; Andrew Powell; Colin L. Masters; Ashley I. Bush; Graeme O'Keefe; Janetta G. Culvenor; Roberto Cappai; Robert A. Cherny; Paul S. Donnelly; Andrew F. Hill; David Finkelstein; Kevin J. Barnham

The PET imaging agent CuII(atsm) improves motor and cognitive function in Parkinson’s disease.


Journal of Biological Chemistry | 2011

Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (CuII(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model

Cynthia P.W. Soon; Paul S. Donnelly; Bradley J. Turner; Lin W. Hung; Peter J. Crouch; Nicki A. Sherratt; Jiangli Tan; Nastasia K.-H. Lim; Linh Q. Lam; Laura Bica; SinChun Lim; James L. Hickey; Julia Morizzi; Andrew Powell; David Finkelstein; Janetta G. Culvenor; Colin L. Masters; James A. Duce; Anthony R. White; Kevin J. Barnham; Qiao-Xin Li

Background: CuII(atsm) [(diacetylbis(N(4)-methylthiosemicarbazonato) copper(II)] was orally administrated to transgenic SOD1G93A mice. Results: Treatment significantly prolonged lifespan with preservation of motor neurons. Reduced protein oxidation, attenuated astrocyte, and microglial activation also resulted from treatment. Conclusion: CuII(atsm) is neuroprotective in this model even when treatment begins after the onset of disease symptoms. Significance: The drug has therapeutic potential for amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis (ALS) is a progressive paralyzing disease characterized by tissue oxidative damage and motor neuron degeneration. This study investigated the in vivo effect of diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)), which is an orally bioavailable, blood-brain barrier-permeable complex. In vitro the compound inhibits the action of peroxynitrite on Cu,Zn-superoxide dismutase (SOD1) and subsequent nitration of cellular proteins. Oral treatment of transgenic SOD1G93A mice with CuII(atsm) at presymptomatic and symptomatic ages was performed. The mice were examined for improvement in lifespan and motor function, as well as histological and biochemical changes to key disease markers. Systemic treatment of SOD1G93A mice significantly delayed onset of paralysis and prolonged lifespan, even when administered to symptomatic animals. Consistent with the properties of this compound, treated mice had reduced protein nitration and carbonylation, as well as increased antioxidant activity in spinal cord. Treatment also significantly preserved motor neurons and attenuated astrocyte and microglial activation in mice. Furthermore, CuII(atsm) prevented the accumulation of abnormally phosphorylated and fragmented TAR DNA-binding protein-43 (TDP-43) in spinal cord, a protein pivotal to the development of ALS. CuII(atsm) therefore represents a potential new class of neuroprotective agents targeting multiple major disease pathways of motor neurons with therapeutic potential for ALS.


The Journal of Neuroscience | 2014

Oral Treatment with CuII(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

Blaine R. Roberts; Nastasia K.-H. Lim; Erin J. McAllum; Paul S. Donnelly; Dominic J. Hare; Philip Doble; Bradley J. Turner; Katherine A. Price; SinChun Lim; Brett Paterson; James L. Hickey; Tw Rhoads; Williams; Katja M. Kanninen; Lin W. Hung; Liddell; Alexandra Grubman; Jf Monty; Rm Llanos; Kramer; Julian F. B. Mercer; Ashley I. Bush; Colin L. Masters; James A. Duce; Qiao-Xin Li; Joseph S. Beckman; Kevin J. Barnham; Anthony R. White; Peter J. Crouch

Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copperII [CuII(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with CuII(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched 65CuII(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from CuII(atsm) to SOD1, suggesting the improved locomotor function and survival of the CuII(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with CuII(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1.


Proceedings of the National Academy of Sciences of the United States of America | 2012

An impaired mitochondrial electron transport chain increases retention of the hypoxia imaging agent diacetylbis(4-methylthiosemicarbazonato)copperII

Paul S. Donnelly; Jeffrey R. Liddell; SinChun Lim; Brett M. Paterson; Michael A. Cater; Maria S. Savva; Alexandra I. Mot; Janine L. James; Ian A. Trounce; Anthony R. White; Peter J. Crouch

Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copperII [CuII(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson’s disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from CuII(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from CuII(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with CuII(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a CuII(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from CuII(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O2 as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of CuII(atsm) that increases cellular retention of the Cu.


Inorganic Chemistry | 2011

Mechanisms Controlling the Cellular Accumulation of Copper Bis(thiosemicarbazonato) Complexes

Katherine A. Price; Peter J. Crouch; Irene Volitakis; Brett M. Paterson; SinChun Lim; Paul S. Donnelly; Anthony R. White

Copper (Cu) bis(thiosemicarbazonato) metal complexes [Cu(II)(btsc)s] have unique tumor-imaging and treatment properties and more recently have revealed potent neuroprotective actions in animal and cell models of neurodegeneration. However, despite the continued development of Cu(II)(btsc)s as potential therapeutics or diagnostic agents, little is known of the mechanisms involved in cell uptake, subcellular trafficking, and efflux of this family of compounds. Because of their high lipophilicity, it has been assumed that cellular accumulation is through passive diffusion, although this has not been analyzed in detail. The role of efflux pathways in cell homeostasis of the complexes is also largely unknown. In the present study, we investigated the cellular accumulation of the Cu(II)(btsc) complexes Cu(II)(gtsm) and Cu(II)(atsm) in human neuronal (M17) and glial (U87MG) cell lines under a range of conditions. Collectively, the data strongly suggested that Cu(II)(gtsm) and Cu(II)(atsm) may be taken into these cells by combined passive and facilitated (protein-carrier-mediated) mechanisms. This was supported by strong temperature-dependent changes to the uptake of the complexes and the influence of the cell surface protein on Cu accumulation. We found no evidence to support a role for copper-transporter 1 in accumulation of the compounds. Importantly, our findings also demonstrated that Cu from both Cu(II)(gtsm) and Cu(II)(atsm) was rapidly effluxed from the cells through active mechanisms. Whether this was in the form of released ionic Cu or as an intact metal complex is not known. However, this finding highlighted the difficulty of trying to determine the uptake mechanism of metal complexes when efflux is occurring concomitantly. These findings are the first detailed exploration of the cellular accumulation mechanisms of Cu(II)(btsc)s. The study delineates strategies to investigate the uptake and efflux mechanisms of metal complexes in cells, while highlighting specific difficulties and challenges that need to be considered before drawing definitive conclusions.


Journal of the American Chemical Society | 2013

Diagnostic imaging agents for alzheimer's disease: Copper radiopharmaceuticals that target aβ plaques

James L. Hickey; SinChun Lim; David J. Hayne; Brett M. Paterson; Jonathan M. White; Victor L. Villemagne; Peter Roselt; David Binns; Carleen Cullinane; Charmaine M. Jeffery; Roger I. Price; Kevin J. Barnham; Paul S. Donnelly

One of the pathological hallmarks of Alzheimers disease is the presence of amyloid-β plaques in the brain and the major constituent of these plaques is aggregated amyloid-β peptide. New thiosemicarbazone-pyridylhydrazine based ligands that incorporate functional groups designed to bind amyloid-β plaques have been synthesized. The new ligands form stable four coordinate complexes with a positron-emitting radioactive isotope of copper, (64)Cu. Two of the new Cu(II) complexes include a functionalized styrylpyridine group and these complexes bind to amyloid-β plaques in samples of post-mortem human brain tissue. Strategies to increase brain uptake by functional group manipulation have led to a (64)Cu complex that effectively crosses the blood-brain barrier in wild-type mice. The new complexes described in this manuscript provide insight into strategies to deliver metal complexes to amyloid-β plaques.


Chemical Communications | 2010

A copper radiopharmaceutical for diagnostic imaging of Alzheimer's disease: a bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-β plaques

SinChun Lim; Brett M. Paterson; Michelle Fodero-Tavoletti; Graeme O'Keefe; Roberto Cappai; Kevin J. Barnham; Victor L. Villemagne; Paul S. Donnelly

A bis(thiosemicarbazonato)copper(ii) complex with an appended stilbene functional group binds to amyloid-beta plaques that are associated with Alzheimers disease. The complex has the potential to be of use as a copper-64 radiopharmaceutical to assist in the diagnosis of Alzheimers disease by positron emission tomography.


Journal of Biological Inorganic Chemistry | 2010

Copper and zinc bis(thiosemicarbazonato) complexes with a fluorescent tag: synthesis, radiolabelling with copper-64, cell uptake and fluorescence studies

SinChun Lim; Katherine A. Price; Siow-Feng Chong; Brett M. Paterson; Aphrodite Caragounis; Kevin J. Barnham; Peter J. Crouch; Josephine M. Peach; Jonathan R. Dilworth; Anthony R. White; Paul S. Donnelly

The synthesis of new copper(II) bis(thiosemicarbazonato) complexes with an appended pyrene chromophore and their zinc(II) analogues is reported. The new proligands and their copper(II) and zinc(II) complexes were characterised by a combination of NMR, EPR, high performance liquid chromatography, mass spectrometry, electronic spectroscopy and electrochemical measurements. The new copper(II) complexes are fluorescent as a consequence of an appended pyrene substituent that is separated from the sulphur coordinating to the metal ion by five bonds. The emission from the pyrene substituent is concentration- and solvent-dependent with characteristic formation of excimer aggregates. A radioactive 64Cu complex has been prepared. Cell permeability, intracellular distribution and importantly the ability to cross the nuclear membrane to target DNA were investigated using confocal fluorescence microscopy in a human cancer cell line under normal oxygen conditions and hypoxic conditions. In both cases, there was no evidence of uptake of the copper(II) bis(thiosemicarbazonato) complexes in the area of the cell nucleus.


PLOS ONE | 2012

Inhibition of TDP-43 Accumulation by Bis(thiosemicarbazonato)-Copper Complexes

Sarah J. Parker; Jodi Meyerowitz; Janine L. James; Jeffrey R. Liddell; Takashi Nonaka; Masato Hasegawa; Katja M. Kanninen; SinChun Lim; Brett M. Paterson; Paul S. Donnelly; Peter J. Crouch; Anthony R. White

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, motor neuron disease with no effective long-term treatment options. Recently, TDP-43 has been identified as a key protein in the pathogenesis of some cases of ALS. Although the role of TDP-43 in motor neuron degeneration is not yet known, TDP-43 has been shown to accumulate in RNA stress granules (SGs) in cell models and in spinal cord tissue from ALS patients. The SG association may be an early pathological change to TDP-43 metabolism and as such a potential target for therapeutic intervention. Accumulation of TDP-43 in SGs induced by inhibition of mitochondrial activity can be inhibited by modulation of cellular kinase activity. We have also found that treatment of cells and animal models of neurodegeneration, including an ALS model, with bioavailable bis(thiosemicarbazonato)copperII complexes (CuII(btsc)s) can modulate kinase activity and induce neuroprotective effects. In this study we examined the effect of diacetylbis(-methylthiosemicarbazonato)copperII (CuII(atsm)) and glyoxalbis(-methylthiosemicarbazonato)copperII (CuII(gtsm)) on TDP-43-positive SGs induced in SH-SY5Y cells in culture. We found that the CuII(btsc)s blocked formation of TDP-43-and human antigen R (HuR)-positive SGs induced by paraquat. The CuII(btsc)s protected neurons from paraquat-mediated cell death. These effects were associated with inhibition of ERK phosphorylation. Co-treatment of cultures with either CuII(atsm) or an ERK inhibitor, PD98059 both prevented ERK activation and blocked formation of TDP-43-and HuR-positive SGs. CuII(atsm) treatment or ERK inhibition also prevented abnormal ubiquitin accumulation in paraquat-treated cells suggesting a link between prolonged ERK activation and abnormal ubiquitin metabolism in paraquat stress and inhibition by Cu. Moreover, CuII(atsm) reduced accumulation of C-terminal (219–414) TDP-43 in transfected SH-SY5Y cells. These results demonstrate that CuII(btsc) complexes could potentially be developed as a neuroprotective agent to modulate neuronal kinase function and inhibit TDP-43 aggregation. Further studies in TDP-43 animal models are warranted.


Parkinsonism & Related Disorders | 2009

P2.097 A reactive nitrogen species scavenger is neuroprotective in multiple Parkinson's disease animal models

Lin Wai Hung; Blaine R. Roberts; Simon Wilkins; Jessica L. George; Chi L. L. Pham; SinChun Lim; Peter J. Crouch; Milawaty Nurjono; Lydia Gunawan; N. Critch; Nicki A. Sherratt; Robert A. Cherny; Ashley I. Bush; Colin L. Masters; Janetta G. Culvenor; Roberto Cappai; Anthony R. White; Paul S. Donnelly; Victor L. Villemagne; David Finkelstein; Kevin J. Barnham

Background: Parkinson’s disease is a multi-facet disease having a combination of risk factors including genetic and environmental. In this disease, the fundamental pathology is the death of dopaminergic neurons that make up the nigrostatrial pathway. Whilst the exact mechanism causing this cellular death has not been elucidated, there is increasing evidence that reactive nitrogen species (RNS), such as nitric oxide (NO) and peroxynitrite, play a pivotal role in pathogenesis. Aim: To develop a therapeutic approach capable of inhibiting RNS associated damage in Parkinson’s disease models. Methods: We have identified diacetylbis(N (4)-methyl-3-thiosemicarbazonato) copper(II) [Cu(atsm)] as a potent scavenger of NO. This compound is capable of crossing the blood brain barrier and was administered to a variety of Parkinsonian models including the MPTP and 6-OHDA toxic lesion models and the transgenic mouse model overexpressing the A53T mutant a-synuclein protein. The efficacy of the compound was assessed for its ability to rescue motor deficits and inhibit disease relevant pathology. Results: Following three weeks of treatment by oral gavage improvements in motor function as assessed by a pole test were observed in all the treated animals as compared to sham treated. There were increases in dopaminergic neurons within the substantia nigra of the treated animals. This was accompanied by a decrease in a-synuclein within the substantia nigra. Conclusion: Cu(atsm) is a potent reactive nitrogen species scavenger that is effective in rescuing Parkinson’s disease like phenotypes in a variety of animal models indicating that this class of compound has potential as therapy for Parkinson’s disease.

Collaboration


Dive into the SinChun Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony R. White

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin W. Hung

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge