Siqi Tian
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siqi Tian.
Nature | 2015
Shifeng Xue; Siqi Tian; Kotaro Fujii; Wipapat Kladwang; Rhiju Das; Maria Barna
Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5′ untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.
RNA | 2015
Zhichao Miao; Ryszard W. Adamiak; Marc-Frédérick Blanchet; Michal Boniecki; Janusz M. Bujnicki; Shi-Jie Chen; Clarence Yu Cheng; Grzegorz Chojnowski; Fang-Chieh Chou; Pablo Cordero; José Almeida Cruz; Adrian R. Ferré-D'Amaré; Rhiju Das; Feng Ding; Nikolay V. Dokholyan; Stanislaw Dunin-Horkawicz; Wipapat Kladwang; Andrey Krokhotin; Grzegorz Lach; Marcin Magnus; François Major; Thomas H. Mann; Benoît Masquida; Dorota Matelska; Mélanie Meyer; Alla Peselis; Mariusz Popenda; Katarzyna J. Purzycka; Alexander Serganov; Juliusz Stasiewicz
This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/.
eLife | 2015
Clarence Yu Cheng; Fang-Chieh Chou; Wipapat Kladwang; Siqi Tian; Pablo Cordero; Rhiju Das
Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI: http://dx.doi.org/10.7554/eLife.07600.001
Biochemistry | 2014
Wipapat Kladwang; Thomas H. Mann; Alex Becka; Siqi Tian; Hanjoo Kim; Sungroh Yoon; Rhiju Das
Chemical mapping experiments offer powerful information about RNA structure but currently involve ad hoc assumptions in data processing. We show that simple dilutions, referencing standards (GAGUA hairpins), and HiTRACE/MAPseeker analysis allow rigorous overmodification correction, background subtraction, and normalization for electrophoretic data and a ligation bias correction needed for accurate deep sequencing data. Comparisons across six noncoding RNAs stringently test the proposed standardization of dimethyl sulfate (DMS), 2′-OH acylation (SHAPE), and carbodiimide measurements. Identification of new signatures for extrahelical bulges and DMS “hot spot” pockets (including tRNA A58, methylated in vivo) illustrates the utility and necessity of standardization for quantitative RNA mapping.
RNA | 2014
Siqi Tian; Pablo Cordero; Wipapat Kladwang; Rhiju Das
The three-dimensional conformations of non-coding RNAs underpin their biochemical functions but have largely eluded experimental characterization. Here, we report that integrating a classic mutation/rescue strategy with high-throughput chemical mapping enables rapid RNA structure inference with unusually strong validation. We revisit a paradigmatic 16S rRNA domain for which SHAPE (selective 2`-hydroxyl acylation with primer extension) suggested a conformational change between apo- and holo-ribosome conformations. Computational support estimates, data from alternative chemical probes, and mutate-and-map (M2) experiments expose limitations of prior methodology and instead give a near-crystallographic secondary structure. Systematic interrogation of single base pairs via a high-throughput mutation/rescue approach then permits incisive validation and refinement of the M2-based secondary structure and further uncovers the functional conformation as an excited state (25+/-5% population) accessible via a single-nucleotide register shift. These results correct an erroneous SHAPE inference of a ribosomal conformational change and suggest a general mutate-map-rescue approach for dissecting RNA dynamic structure landscapes.
Nucleic Acids Research | 2015
Siqi Tian; Joseph D. Yesselman; Pablo Cordero; Rhiju Das
Customized RNA synthesis is in demand for biological and biotechnological research. While chemical synthesis and gel or chromatographic purification of RNA is costly and difficult for sequences longer than tens of nucleotides, a pipeline of primer assembly of DNA templates, in vitro transcription by T7 RNA polymerase and kit-based purification provides a cost-effective and fast alternative for preparing RNA molecules. Nevertheless, designing template primers that optimize cost and avoid mispriming during polymerase chain reaction currently requires expert inspection, downloading specialized software or both. Online servers are currently not available or maintained for the task. We report here a server named Primerize that makes available an efficient algorithm for primer design developed and experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides. Free access: http://primerize.stanford.edu.
bioRxiv | 2014
Clarence Yu Cheng; Fang-Chieh Chou; Wipapat Kladwang; Siqi Tian; Pablo Cordero; Rhiju Das
Large RNAs control myriad biological processes but challenge tertiary structure determination. We report that integrating multiplexed •OH cleavage analysis with tabletop deep sequencing (MOHCA-seq) gives nucleotide-resolution proximity maps of RNA structure from single straightforward experiments. After achieving 1-nm resolution models for RNAs of known structure, MOHCA-seq reveals previously unattainable 3D information for ligand-induced conformational changes in a double glycine riboswitch and the sixth community-wide RNA puzzle, an adenosylcobalamin riboswitch.
Nucleic Acids Research | 2018
Joseph D. Yesselman; Siqi Tian; Xin Liu; Lei Shi; Jin Billy Li; Rhiju Das
Abstract Chemical mapping is a broadly utilized technique for probing the structure and function of RNAs. The volume of chemical mapping data continues to grow as more researchers routinely employ this information and as experimental methods increase in throughput and information content. To create a central location for these data, we established an RNA mapping database (RMDB) 5 years ago. The RMDB, which is available at http://rmdb.stanford.edu, now contains chemical mapping data for over 800 entries, involving 134 000 natural and engineered RNAs, in vitro and in cellulo. The entries include large data sets from multidimensional techniques that focus on RNA tertiary structure and co-transcriptional folding, resulting in over 15 million residues probed. The database interface has been redesigned and now offers interactive graphical browsing of structural, thermodynamic and kinetic data at single-nucleotide resolution. The front-end interface now uses the force-directed RNA applet for secondary structure visualization and other JavaScript-based views of bar graphs and annotations. A new interface also streamlines the process for depositing new chemical mapping data to the RMDB.
eLife | 2018
Siqi Tian; Wipapat Kladwang; Rhiju Das
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Bioinformatics | 2017
Siqi Tian; Rhiju Das
Summary : Rapid RNA synthesis of comprehensive single mutant libraries and targeted multiple mutant libraries is enabling new multidimensional chemical approaches to solve RNA structures. PCR assembly of DNA templates and in vitro transcription allow synthesis and purification of hundreds of RNA mutants in a cost‐effective manner, with sharing of primers across constructs allowing significant reductions in expense. However, these protocols require organization of primer locations across numerous 96 well plates and guidance for pipetting, non‐trivial tasks for which informatics and visualization tools can prevent costly errors. We report here an online tool to accelerate synthesis of large libraries of desired mutants through design and efficient organization of primers. The underlying program and graphical interface have been experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides and libraries encompassing up to 960 variants. In addition to the freely available Primerize‐2D server, the primer design code is available as a stand‐alone Python package for broader applications. Availability and Implementation : http://primerize2d.stanford.edu Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Summary Rapid RNA synthesis of comprehensive single mutant libraries and targeted multiple mutant libraries is enabling new multidimensional chemical approaches to solve RNA structures. PCR assembly of DNA templates and in vitro transcription allow synthesis and purification of hundreds of RNA mutants in a cost-effective manner, with sharing of primers across constructs allowing significant reductions in expense. However, these protocols require organization of primer locations across numerous 96 well plates and guidance for pipetting, non-trivial tasks for which informatics and visualization tools can prevent costly errors. We report here an online tool to accelerate synthesis of large libraries of desired mutants through design and efficient organization of primers. The underlying program and graphical interface have been experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides and libraries encompassing up to 960 variants. In addition to the freely available Primerize-2D server, the primer design code is available as a stand-alone Python package for broader applications. Availability and Implementation http://primerize2d.stanford.edu. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.