Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siye Wei is active.

Publication


Featured researches published by Siye Wei.


Environmental Pollution | 2013

Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China.

Zhonghuan Xia; Xiaoli Duan; Shu Tao; Weixun Qiu; Di Liu; Yilong Wang; Siye Wei; Bin Wang; Qiujing Jiang; Bin Lu; Yunxue Song; Xinxin Hu

Passive air samplers were deployed to collect both gas and particulate phase polycyclic aromatic hydrocarbons in Taiyuan between 2009 and 2010. Annual average concentrations of BaP equivalent concentration (B[a]P(eq)) in background, rural and urban areas were 2.90 ± 0.29, 23.2 ± 30.8 and 27.4 ± 28.1 ng/m(3), respectively, with higher concentration in the winter than in other seasons. The median B[a]P(eq) concentrations of annual inhalation exposure were estimated to be in the range of 103-347 ng/d for all population groups in rural as well as in urban areas. The median values of incremental lifetime cancer risk (ILCR) induced by whole year inhalation exposure for all groups were basically larger than 10(-6), with higher values in winter than in other seasons and in urban than in rural area. In the same season and area, the ILCR of adults was larger than other age groups and that of females was a little higher than males.


Environmental Science & Technology | 2012

Emissions of Parent, Nitro, and Oxygenated Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion in Rural China

Guofeng Shen; Shu Tao; Siye Wei; Yanyan Zhang; Rong Wang; Bin Wang; Wei Li; Huizhong Shen; Ye Huang; Yuanchen Chen; Han Chen; Yifeng Yang; Wei Wang; Xilong Wang; Wenxin Liu; Staci L. Massey Simonich

Residential wood combustion is one of the important sources of air pollution in developing countries. Among the pollutants emitted, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives, including nitrated and oxygenated PAHs (nPAHs and oPAHs), are of concern because of their mutagenic and carcinogenic effects. In order to evaluate their impacts on regional air quality and human health, emission inventories, based on realistic emission factors (EFs), are needed. In this study, the EFs of 28 pPAHs (EF(PAH28)), 9 nPAHs (EF(PAHn9)), and 4 oPAHs (EF(PAHo4)) were measured for residential combustion of 27 wood fuels in rural China. The measured EF(PAH28), EF(PAHn9), and EF(PAHo4) for brushwood were 86.7 ± 67.6, 3.22 ± 1.95 × 10(-2), and 5.56 ± 4.32 mg/kg, which were significantly higher than 12.7 ± 7.0, 8.27 ± 5.51 × 10(-3), and 1.19 ± 1.87 mg/kg for fuel wood combustion (p < 0.05). Sixteen U.S. EPA priority pPAHs contributed approximately 95% of the total of the 28 pPAHs measured. EFs of pPAHs, nPAHs, and oPAHs were positively correlated with one another. Measured EFs varied obviously depending on fuel properties and combustion conditions. The EFs of pPAHs, nPAHs, and oPAHs were significantly correlated with modified combustion efficiency and fuel moisture. Nitro-naphthalene and 9-fluorenone were the most abundant nPAHs and oPAHs identified. Both nPAHs and oPAHs showed relatively high tendencies to be present in the particulate phase than pPAHs due to their lower vapor pressures. The gas-particle partitioning of freshly emitted pPAHs, nPAHs, and oPAHs was primarily controlled by organic carbon absorption.


Environmental Science & Technology | 2013

Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy- Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China

Guofeng Shen; Shu Tao; Siye Wei; Yuanchen Chen; Yanyan Zhang; Huizhong Shen; Ye Huang; Dan Zhu; Chenyi Yuan; Haochen Wang; Yafei Wang; Lijun Pei; Yilan Liao; Yonghong Duan; Bin Wang; Rong Wang; Yan Lv; Wei Li; Xilong Wang; Xiaoying Zheng

Air pollutants from residential solid fuel combustion are attracting growing public concern. Field measured emission factors (EFs) of various air pollutants for solid fuels are close to the reality and urgently needed for better emission estimations. In this study, emission factors of particulate matter (PM), organic carbon (OC), elemental carbon (EC), and various polycyclic aromatic hydrocarbons (PAHs) from residential combustions of coal briquette, coal cake, and wood were measured in rural Heshun County, China. The measured EFs of PM, OC, and EC were 8.1-8.5, 2.2-3.6, 0.91-1.6 g/kg for the wood burnt in a simple metal stove, 0.54-0.64, 0.13-0.14, 0.040-0.0041 g/kg for the briquette burned in an improved stove with a chimney, and 3.2-8.5, 0.38-0.58, 0.022-0.052 g/kg for the homemade coal cake combusted in a brick stove with a flue, respectively. EFs of 28 parent PAHs, 4 oxygenated PAHs, and 9 nitro-PAHs were 182-297, 7.8-10, 0.14-0.55 mg/kg for the wood, 14-16, 1.7-2.6, 0.64-0.83 mg/kg for the briquette, and 168-223, 4.7-9.5, 0.16-2.4 mg/kg for the coal cake, respectively. Emissions from the wood and coal cake combustions were much higher than those for the coal briquette, especially true for high molecular weight PAHs. Most EFs measured in the field were higher than those measured in stove combustions under laboratory conditions.


Environmental Science & Technology | 2012

Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

Guofeng Shen; Shu Tao; Siye Wei; Yinsong Zhang; Rong Wang; Baolin Wang; Wei Li; Huizhong Shen; Yao Huang; Chen Y; Han Y. H. Chen; Yu Yang; Wei Wang; Wen Wei; Wang X; Wen-Xiu Liu; Masse Simonich Sl

Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p < 0.05). However, the differences in EF(PAH) were not significant (p > 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.


Environmental Science & Technology | 2013

Emission Characteristics for Polycyclic Aromatic Hydrocarbons from Solid Fuels Burned in Domestic Stoves in Rural China

Guofeng Shen; Shu Tao; Yuanchen Chen; Yanyan Zhang; Siye Wei; Miao Xue; Bin Wang; Rong Wang; Yan Lu; Wei Li; Huizhong Shen; Ye Huang; Han Chen

Emission characterization of polycyclic aromatic hydrocarbons (PAHs) from residential combustion of crop residues, woody material, coal, and biomass pellets in domestic stoves in rural China are compared in term of emission factors (EFs), influencing factors, composition profiles, isomer ratios and phase distributions. The EFs of PAHs vary by 2 orders of magnitude among fuel types suggesting that a detailed fuel categorization is useful in the development of an emission inventory and potential in emission abatement of PAHs by replacing dirty fuels with relatively cleaner ones. The influence of fuel moisture in biomass burning is nonlinear. Biofuels with very low moisture display relatively high emissions as do fuels with very high moisture. Bituminous coals and brushwood yield relatively large fractions of high molecular PAHs. The emission factor of benzo(a)pyrene equivalent quantity for raw bituminous coal is as high as 52 mg/kg, which is 1-2 orders of magnitude higher than the other fuels. For source diagnosis, high molecular weight isomers are more informative than low molecular weight ones and multiple ratios could be used together whenever possible.


Journal of Environmental Sciences-china | 2013

Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion

Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Qiuyue Zhao; Bing Li; Haisuo Wu; Shu Tao

Controlled combustion experiments were conducted to investigate the influence of fuel charge size, moisture, air ventilation and feeding rate on the emission factors (EFs) of carbonaceous particulate matter, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove. Measured EFs were found to be independent of fuel charge size, but increased with increasing fuel moisture. Pollution emissions from the normal burning under an adequate air supply condition were the lowest for most pollutants, while more pollutants were emitted when an oxygen deficient atmosphere was formed in the stove chamber during fast burning. The impacts of these factors on the size distribution of emitted particles was also studied. Modified combustion efficiency and the four investigated factors explained 68%, 72%, and 64% of total variations in EFs of PM, organic carbon, and oxygenated PAHs, respectively, but only 36%, 38% and 42% of the total variations in EFs of elemental carbon, pPAHs and nitro-PAHs, respectively.


Environmental Science & Technology | 2012

Retene Emission from Residential Solid Fuels in China and Evaluation of Retene as a Unique Marker for Soft Wood Combustion

Guofeng Shen; Shu Tao; Siye Wei; Yanyan Zhang; Rong Wang; Bin Wang; Wei Li; Huizhong Shen; Ye Huang; Yifeng Yang; Wei Wang; Xilong Wang; Staci L. Massey Simonich

Retene (1-methyl-7-isopropylphenanthrene) is often used as a marker for softwood combustion and for polycyclic aromatic hydrocarbon (PAH) source apportionment. The emission factors of retene (EF(RET)s) from 11 crop residues, 27 firewood fuels, and 5 coals were measured using traditional rural Chinese stoves. Retene was measured in combustion emissions from all of the residential fuels tested and EF(RET)s varied significantly among the fuels due to the differences in fuel properties and combustion conditions. EF(RET)s for pine (0.34 ± 0.08 mg/kg) and larch (0.29 ± 0.22 mg/kg) were significantly higher than those of other wood types, including fir and cypress (0.081 ± 0.058 mg/kg). However, EF(RET)s for crop residues varied from 0.048 ± 0.008 to 0.37 ± 0.14 mg/kg and were not significantly lower than those for softwood (0.074 ± 0.026 to 0.34 ± 0.08 mg/kg). The EF(RET)s for coal were very high and ranged from 2.2 ± 1.5 (anthracite briquette) to 187 ± 113 mg/kg (raw bituminous chunk). EF(RET) was positively correlated with EFs of coemitted particulate matter (EF(PM)) and phenanthrene (EF(PHE)) for crop residue and coal, but not for wood. In addition, the ratios of EF(PHE)/EF(RET) and EF(PM)/EF(RET) for coals were much lower than those for crop residues and wood. These data suggest that retene is not a unique PAH marker for softwood combustion and that coal combustion, in particular, should be taken into account when retene is used for PAH source apportionment.


Environmental Pollution | 2014

Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolites – a controlled case study in Beijing, China

Yanyan Zhang; Junnan Ding; Guofeng Shen; Junjun Zhong; Chen Wang; Siye Wei; Chaoqi Chen; Yuanchen Chen; Yan Lu; Huizhong Shen; Wei Li; Ye Huang; Han Chen; Shu Su; Nan Lin; Xilong Wang; Wenxin Liu; Shu Tao

Daily dietary and inhalation exposures to 16 parent polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 13 monohydroxy metabolites (OHPAHs) were monitored for 12 non-smoking university students in Beijing, China, during a controlled feeding experiment. The relationship between the urinary excretion of OHPAHs and the uptake of PAHs was investigated. The results suggest severe exposure of the subjects to PAHs via both dietary and inhalation pathways. Large increase of most urinary OHPAHs occurred after the ingestion of lamb kabob. Higher concentrations of OHPAHs were observed for female subjects, with the intakes of parent PAHs lower than those by males, likely due to the gender differences in metabolism. It appears that besides 1-PYR, metabolites of PHE could also be used as biomarkers to indicate the short-term dietary exposure to PAHs and urinary 3-BaA may serve as the biomarker for inhalation intake of high molecular weight PAHs.


Journal of Environmental Sciences-china | 2013

Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning

Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Bing Wang; Rong Wang; Huizhong Shen; Wei Li; Yanyan Zhang; Ye Huang; Han Chen; Wen Wei; Qiuyue Zhao; Bin Li; Haisuo Wu; Shu Tao

The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF), which could be influenced by a variety of factors such as fuel properties, stove type, fire management and even methods used in measurements. The impacts of these factors are complicated and often interact with each other. Controlled burning experiments were conducted to investigate the influences of fuel mass load, air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove. The results showed that the EFs of PM (EF(PM)), organic carbon (EFoc) and elemental carbon (EF(EC)) were independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 microm, contributing 86.4% +/- 3.9% of the total. The size distribution of PM was influenced by the burning rate and air supply conditions. On average, EF(PM), EF(OC) and EF(EC) for corn straw burned in a residential cooking stove were (3.84 +/- 1.02), (0.846 +/- 0.895) and (0.391 +/- 0.350) g/kg, respectively. EF(PM), EF(OC) and EF(EC) were found to be positively correlated with each other (p < 0.05), but they were not significantly correlated with the EF of co-emitted CO, suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.


Journal of Environmental Sciences-china | 2013

Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions.

Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Bin Wang; Rong Wang; Yan Lv; Huizhong Shen; Wei Li; Yanyan Zhang; Ye Huang; Han Chen; Wen Wei; Qiuyue Zhao; Bing Li; Haisuo Wu; Shu Tao

Emission factors (EFs) of parent polycyclic aromatic hydrocarbons (pPAHs), nitrated PAHs (nPAHs), and oxygenated PAHs (oPAHs) were measured for indoor corn straw burned in a brick cooking stove under different burning conditions. The EFs of total 28 pPAHs, 6 nPAHs and 4 oPAHs were (7.9 +/- 3.4), (6.5 +/- 1.6) x 10(-3), and (6.1 +/- 1.4) x 10(-1) mg/kg, respectively. Fuel charge size had insignificant influence on the pollutant emissions. Measured EFs increased significantly in a fast burning due to the oxygen deficient atmosphere formed in the stove chamber. In both restricted and enhanced air supply conditions, the EFs of pPAHs, nPAHs and oPAHs were significantly higher than those measured in normal burning conditions. Though EFs varied among different burning conditions, the composition profiles and calculated isomer ratios were similar, without significant differences. The results from the stepwise regression model showed that fuel burning rate, air supply amount, and modified combustion efficiency were the three most significant influencing factors, explaining 72%-85% of the total variations.

Collaboration


Dive into the Siye Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuanchen Chen

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Wang

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge