Skylar Martin-Brown
Stowers Institute for Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Skylar Martin-Brown.
Molecular Cell | 2010
Chengqi Lin; Edwin R. Smith; Hidehisa Takahashi; Ka Chun Lai; Skylar Martin-Brown; Laurence Florens; Michael P. Washburn; Joan Weliky Conaway; Ronald C. Conaway; Ali Shilatifard
Chromosomal translocations involving the MLL gene are associated with infant acute lymphoblastic and mixed lineage leukemia. There are a large number of translocation partners of MLL that share very little sequence or seemingly functional similarities; however, their translocations into MLL result in the pathogenesis of leukemia. To define the molecular reason why these translocations result in the pathogenesis of leukemia, we purified several of the commonly occurring MLL chimeras. We have identified super elongation complex (SEC) associated with all chimeras purified. SEC includes ELL, P-TEFb, AFF4, and several other factors. AFF4 is required for SEC stability and proper transcription by poised RNA polymerase II in metazoans. Knockdown of AFF4 in leukemic cells shows reduction in MLL chimera target gene expression, suggesting that AFF4/SEC could be a key regulator in the pathogenesis of leukemia through many of the MLL partners.
Cell | 2011
Hidehisa Takahashi; Tari Parmely; Shigeo Sato; Chieri Tomomori-Sato; Charles A. S. Banks; Stephanie E. Kong; Henrietta Szutorisz; Selene K. Swanson; Skylar Martin-Brown; Michael P. Washburn; Laurence Florens; Chris Seidel; Chengqi Lin; Edwin R. Smith; Ali Shilatifard; Ronald C. Conaway; Joan Weliky Conaway
Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.
Molecular and Cellular Biology | 2008
Min Wu; Peng Fei Wang; Jung Shin Lee; Skylar Martin-Brown; Laurence Florens; Michael P. Washburn; Ali Shilatifard
ABSTRACT In yeast, the macromolecular complex Set1/COMPASS is capable of methylating H3K4, a posttranslational modification associated with actively transcribed genes. There is only one Set1 in yeast; yet in mammalian cells there are multiple H3K4 methylases, including Set1A/B, forming human COMPASS complexes, and MLL1-4, forming human COMPASS-like complexes. We have shown that Wdr82, which associates with chromatin in a histone H2B ubiquitination-dependent manner, is a specific component of Set1 complexes but not that of MLL1-4 complexes. RNA interference-mediated knockdown of Wdr82 results in a reduction in the H3K4 trimethylation levels, although these cells still possess active MLL complexes. Comprehensive in vitro enzymatic studies with Set1 and MLL complexes demonstrated that the Set1 complex is a more robust H3K4 trimethylase in vitro than the MLL complexes. Given our in vivo and in vitro observations, it appears that the human Set1 complex plays a more widespread role in H3K4 trimethylation than do the MLL complexes in mammalian cells.
Molecular Cell | 2010
Geetha S. Hewawasam; Manjunatha Shivaraju; Mark Mattingly; Swaminathan Venkatesh; Skylar Martin-Brown; Laurence Florens; Jerry L. Workman; Jennifer L. Gerton
Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4, and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4.
Journal of Biological Chemistry | 2008
Nawel Mahrour; William B. Redwine; Laurence Florens; Selene K. Swanson; Skylar Martin-Brown; William D. Bradford; Karen Staehling-Hampton; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway
The Elongin BC-box protein family includes the von Hippel-Lindau tumor suppressor and suppressor of cytokine signaling proteins, which are substrate recognition subunits of structurally related classes of E3 ubiquitin ligases composed of Elongin C-Elongin B-Cullin 2-Rbx1 (Cul2 ubiquitin ligases) or of Elongin C-Elongin B-Cullin 5-Rbx2 (Cul5 ubiquitin ligases). The Elongin BC complex acts as an adaptor that links a substrate recognition subunit to heterodimers of either Cullin 2 (Cul2) and RING finger protein Rbx1 or Cullin 5 (Cul5) and Rbx2. It has been shown ( Kamura, T., Maenaka, K., Kotoshiba, S., Matsumoto, M., Kohda, D., Conaway, R. C., Conaway, J. W., and Nakayama, K. I. (2004) Genes Dev. 18, 3055-3065 ) that interaction of BC-box proteins with their cognate Cul-Rbx module is determined by specific regions, called Cul2- or Cul5-boxes, located immediately downstream of their BC-boxes. Here, we investigate further the mechanisms governing assembly of BC-box proteins with their specific Cul-Rbx modules. Through purification and characterization of a larger collection of BC-box proteins that serve as substrate recognition subunits of Cul2 and Cul5 ubiquitin ligases and through structure-function studies, we define Cul2- and Cul5-boxes in greater detail. Although it previously appeared that there was little sequence similarity between Cul5- and Cul2-box motifs, analyses of newly identified BC-box proteins reveal that residues conserved in the Cul2-box represent a subset of those conserved in the Cul5-box. The sequence motif LPΦP, which is conserved in most Cul5-boxes and has been suggested to specify assembly of Cul5 ligases, is compatible with Cul2 interaction. Finally, the spacing between BC- and Cullin-boxes is much more flexible than has been appreciated and can vary from as few as 3 and as many as ∼80 amino acids. Taken together, our findings shed new light on the mechanisms by which BC-box proteins direct recruitment of Cullin-Rbx modules during reconstitution of ubiquitin ligases.
Chemistry & Biology | 2010
Karen T. Smith; Skylar Martin-Brown; Laurence Florens; Michael P. Washburn; Jerry L. Workman
Histone deacetylase (HDAC) inhibitors are in clinical development for several diseases, including cancers and neurodegenerative disorders. HDACs 1 and 2 are among the targets of these inhibitors and are part of multisubunit protein complexes. HDAC inhibitors (HDACis) block the activity of HDACs by chelating a zinc molecule in their catalytic sites. It is not known if the inhibitors have any additional functional effects on the multisubunit HDAC complexes. Here, we find that suberoylanilide hydroxamic acid (SAHA), the first FDA-approved HDACi for cancer, causes the dissociation of the PHD-finger-containing ING2 subunit from the Sin3 deacetylase complex. Loss of ING2 disrupts the in vivo binding of the Sin3 complex to the p21 promoter, an important target gene for cell growth inhibition by SAHA. Our findings reveal a molecular mechanism by which HDAC inhibitors disrupt deacetylase function.
Molecular & Cellular Proteomics | 2012
Karen T. Smith; Mihaela E. Sardiu; Skylar Martin-Brown; Chris Seidel; Arcady Mushegian; Rhonda Egidy; Laurence Florens; Michael P. Washburn; Jerry L. Workman
Here we describe the function of a previously uncharacterized protein, named family with sequence similarity 60 member A (FAM60A) that maps to chromosome 12p11 in humans. We use quantitative proteomics to determine that the main biochemical partners of FAM60A are subunits of the Sin3 deacetylase complex and show that FAM60A resides in active HDAC complexes. In addition, we conduct gene expression pathway analysis and find that FAM60A regulates expression of genes that encode components of the TGF-beta signaling pathway. Moreover, our studies reveal that loss of FAM60A or another component of the Sin3 complex, SDS3, leads to a change in cell morphology and an increase in cell migration. These studies reveal the function of a previously uncharacterized protein and implicate the Sin3 complex in suppressing cell migration.
The EMBO Journal | 2011
Adalberto Costessi; Nawel Mahrour; Esther Tijchon; Rieka Stunnenberg; Marieke A. Stoel; Pascal W. T. C. Jansen; Dotan Sela; Skylar Martin-Brown; Michael P. Washburn; Laurence Florens; Joan Weliky Conaway; Ronald C. Conaway; Hendrik G. Stunnenberg
The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein‐complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2‐based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome‐wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY‐mediated transcriptional regulation.
Journal of Biological Chemistry | 2007
Charles A. S. Banks; Stephanie E. Kong; Henrik Spåhr; Laurence Florens; Skylar Martin-Brown; Michael P. Washburn; Joan Weliky Conaway; Arcady Mushegian; Ronald C. Conaway
ELL family transcription factors activate the rate of transcript elongation by suppressing transient pausing by RNA polymerase II at many sites along the DNA. ELL-associated factors 1 and 2 (EAF1 and EAF2) bind stably to ELL family members and act as strong positive regulators of their transcription activities. Orthologs of ELL and EAF have been identified in metazoa, but it has been unclear whether such RNA polymerase II elongation factors are utilized in lower eukaryotes. Using bioinformatic and biochemical approaches, we have identified a new Schizosaccharomyces pombe RNA polymerase II elongation factor that is composed of two subunits designated SpELL and SpEAF, which share weak sequence similarity with members of the metazoan ELL and EAF families. Like mammalian ELL-EAF, SpELL-SpEAF stimulates RNA polymerase II transcription elongation and pyrophosphorolysis. In addition, like many yeast RNA polymerase II elongation factors, deletion of the SpELL gene renders S. pombe sensitive to the drug 6-azauracil. Finally, phylogenetic analyses suggest that the SpELL and SpEAF proteins are evolutionarily conserved in many fungi but not in Saccharomyces cerevisiae.
Journal of Biological Chemistry | 2012
Dotan Sela; Lu Chen; Skylar Martin-Brown; Michael P. Washburn; Laurence Florens; Joan Weliky Conaway; Ronald C. Conaway
Background: Transcription factor ATF6α is a master regulator of genes induced by endoplasmic reticulum stress. Results: ATF6α can recruit Mediator and histone acetyltransferase complexes to promoter DNA via interactions with overlapping sites in the activation domain of ATF6α. Conclusion: ATF6α sequences essential for gene activation recruit Mediator and histone acetyltransferases. Significance: Learning how coregulators communicate with DNA binding transcription factors is important for understanding gene regulation. The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.