Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solen Gokhan is active.

Publication


Featured researches published by Solen Gokhan.


Science | 2010

Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages

Florent Ginhoux; Melanie Greter; Marylene Leboeuf; Sayan Nandi; Peter See; Solen Gokhan; Mark F. Mehler; Simon J. Conway; Lai Guan Ng; E. Richard Stanley; Igor M. Samokhvalov; Miriam Merad

Primitive Origins for Microglia Microglia are the resident macrophages of the central nervous system and are associated with neurodegeneration and brain inflammatory diseases. Although the developmental origins of other tissue macrophage populations are well established, the origins of microglia remain controversial. Ginhoux et al. (p. 841, published online 21 October) used in vivo lineage tracing studies to show that microglia arise early in mouse development and derive from primitive macrophages in the yolk sac. This is in contrast to other cells of the mononuclear phagocyte system, which arise later in development from a distinct progenitor population. The developmental origins of adult microglia are revealed. Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor–deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.


BMC Neuroscience | 2010

Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation

Tim R. Mercer; Irfan A. Qureshi; Solen Gokhan; Marcel E. Dinger; Guangyu Li; John S. Mattick; Mark F. Mehler

BackgroundLong non-protein-coding RNAs (ncRNAs) are emerging as important regulators of cellular differentiation and are widely expressed in the brain.ResultsHere we show that many long ncRNAs exhibit dynamic expression patterns during neuronal and oligodendrocyte (OL) lineage specification, neuronal-glial fate transitions, and progressive stages of OL lineage elaboration including myelination. Consideration of the genomic context of these dynamically regulated ncRNAs showed they were part of complex transcriptional loci that encompass key neural developmental protein-coding genes, with which they exhibit concordant expression profiles as indicated by both microarray and in situ hybridization analyses. These included ncRNAs associated with differentiation-specific nuclear subdomains such as Gomafu and Neat1, and ncRNAs associated with developmental enhancers and genes encoding important transcription factors and homeotic proteins. We also observed changes in ncRNA expression profiles in response to treatment with trichostatin A, a histone deacetylase inhibitor that prevents the progression of OL progenitors into post-mitotic OLs by altering lineage-specific gene expression programs.ConclusionThis is the first report of long ncRNA expression in neuronal and glial cell differentiation and of the modulation of ncRNA expression by modification of chromatin architecture. These observations explicitly link ncRNA dynamics to neural stem cell fate decisions, specification and epigenetic reprogramming and may have important implications for understanding and treating neuropsychiatric diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species

Shau Yu Yung; Solen Gokhan; Jennifer Jurcsak; Aldrin E. Molero; Joseph J. Abrajano; Mark F. Mehler

During cerebral cortical development, excitatory glutamatergic projection neurons are generated from neural stem cells intrinsic to the early embryonic cortical ventricular zone by a process of radial migration, whereas most inhibitory γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes (OLs) appear to be elaborated from ventral forebrain stem cells that initially undergo tangential cortical migration before terminal lineage maturation. In contrast to the more compartmentalized developmental organization of the spinal cord, the generation of neurons and OLs from a common ventral forebrain stem cell would expose these cells to the sequential actions of ventral and dorsal gradient morphogens [sonic hedgehog (Shh) and bone morphogenetic proteins (BMPs)] that normally mediate opposing developmental programs. Here we report that Shh promotes GABAergic neuronal/OL lineage restriction of forebrain stem cells, in part, by activation of the basic helix–loop–helix transcription factors, Olig2 and Mash1. In mutant mice with a generalized defect in tangential cortical migration (Dlx1/2−/−), there is a profound and selective reduction in the elaboration of both cortical GABAergic neurons and OLs. Our studies further demonstrate that the sequential elaboration of cortical GABAergic neurons and OLs from common Shh-responsive ventral forebrain progenitors requires the spatial and temporal modulation of cortical BMP signaling by BMP ligands and the BMP antagonist, noggin, respectively. These findings suggest an integrative model for cerebral cortical GABAergic neuronal and OL lineage maturation that would incorporate the sequential contributions of the ventral and dorsal forebrain, and the potential role of regional developmental cues in modulating transcriptional codes within evolving neural lineage species.


Developmental Biology | 2012

The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation

Sayan Nandi; Solen Gokhan; Xu Ming Dai; Suwen Wei; Grigori Enikolopov; Haishan Lin; Mark F. Mehler; E. Richard Stanley

The CSF-1 receptor (CSF-1R) regulates CNS microglial development. However, the localization and developmental roles of this receptor and its ligands, IL-34 and CSF-1, in the brain are poorly understood. Here we show that compared to wild type mice, CSF-1R-deficient (Csf1r-/-) mice have smaller brains of greater mass. They further exhibit an expansion of lateral ventricle size, an atrophy of the olfactory bulb and a failure of midline crossing of callosal axons. In brain, IL-34 exhibited a broader regional expression than CSF-1, mostly without overlap. Expression of IL-34, CSF-1 and the CSF-1R were maximal during early postnatal development. However, in contrast to the expression of its ligands, CSF-1R expression was very low in adult brain. Postnatal neocortical expression showed that CSF-1 was expressed in layer VI, whereas IL-34 was expressed in the meninges and layers II-V. The broader expression of IL-34 is consistent with its previously implicated role in microglial development. The differential expression of CSF-1R ligands, with respect to CSF-1R expression, could reflect their CSF-1R-independent signaling. Csf1r-/- mice displayed increased proliferation and apoptosis of neocortical progenitors and reduced differentiation of specific excitatory neuronal subtypes. Indeed, addition of CSF-1 or IL-34 to microglia-free, CSF-1R-expressing dorsal forebrain clonal cultures, suppressed progenitor self-renewal and enhanced neuronal differentiation. Consistent with a neural developmental role for the CSF-1R, ablation of the Csf1r gene in Nestin-positive neural progenitors led to a smaller brain size, an expanded neural progenitor pool and elevated cellular apoptosis in cortical forebrain. Thus our results also indicate novel roles for the CSF-1R in the regulation of corticogenesis.


The Journal of Neuroscience | 2005

Combinatorial Profiles of Oligodendrocyte-Selective Classes of Transcriptional Regulators Differentially Modulate Myelin Basic Protein Gene Expression

Solen Gokhan; Mireya Marin-Husstege; Shau Yu Yung; Darah Fontanez; Patrizia Casaccia-Bonnefil; Mark F. Mehler

Recent studies suggest that specific neural basic helix-loop-helix (HLH; i.e., Olig1 and Olig2, Mash1), associated inhibitory HLH (i.e., Id2 and Id4), high-mobility group domain (i.e., Sox10), and homeodomain (i.e., Nkx2.2) transcription factors are involved in oligodendrocyte (OL) lineage specification and progressive stages of maturation including myelination. However, the developmental interplay among these lineage-selective determinants, in a cell- and maturational stage-specific context, has not yet been defined. We show here in vivo and in vitro developmental expression profiles for these distinct classes of transcriptional regulators of OLs. We show that progressive stages of OL lineage maturation are characterized by dynamic changes in the subcellular distribution of these transcription factors and by different permutations of combinatorial transcriptional codes. Transient transfections of these precise combinatorial codes with a luciferase reporter gene driven by the myelin basic protein promoter define how changes in the molecular composition of these transcriptional complexes modulate myelin gene expression. Our overall findings suggest that the dynamic interplay between developmental stage-specific classes of transcriptional activators and associated inhibitory factors orchestrate myelin gene expression during terminal maturation of the mammalian CNS.


The Journal of Neuroscience | 1998

Differentiation of Oligodendroglial Progenitors Derived from Cortical Multipotent Cells Requires Extrinsic Signals Including Activation of gp130/LIFβ Receptors

Ronen Marmur; John A. Kessler; Gaofa Zhu; Solen Gokhan; Mark F. Mehler

We have previously isolated epidermal growth factor (EGF)-responsive multipotent progenitor cells from the early postnatal rodent cerebral cortex independent of generative zones. In this study we have examined the mechanisms regulating the generation of differentiated oligodendrocytes (OLs) from these multipotent cells. Although cultures of primary cortical OL progenitor cells propagated at clonal density spontaneously gave rise to differentiated OLs in defined medium, cultures of multipotent progenitors isolated from identical regions supported the elaboration of OL progenitors but not differentiated OLs. These observations indicate that the terminal maturation of OL progenitors derived from multipotent cells is dependent on signals present within the cellular environment. Application of cytokines such as basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), or neurotrophin 3 (NT3) to clonal density cultures of cortical multipotent progenitors increased the proportion of OL progenitors but failed to support the generation of differentiated OLs. By contrast, application of factors that activate gp130/leukemia inhibitory factor β (LIFβ) heterodimeric receptors, such as ciliary neurotrophic factor (CNTF), activated signal transducers and activators of transcription-3 in these OL progenitor cells and promoted the generation of differentiated OLs. Clonal analysis also demonstrated that CNTF directly targets OL progenitors derived from the multipotent cells. These observations suggest that two distinct progenitor cell pathways contribute to the generation of differentiated OLs during postnatal cortical gliogenesis. Although oligodendroglial maturation of classical OL progenitor cells is driven by cell autonomous mechanisms, our findings demonstrate that the generation of differentiated OLs from cortical multipotent progenitor cells is dependent on environmental cues, including activation of gp130/LIFβ receptors.


PLOS ONE | 2009

REST and CoREST Modulate Neuronal Subtype Specification, Maturation and Maintenance

Joseph J. Abrajano; Irfan A. Qureshi; Solen Gokhan; Deyou Zheng; Aviv Bergman; Mark F. Mehler

Background The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master regulator of neuronal gene expression. REST functions as a modular scaffold for dynamic recruitment of epigenetic regulatory factors including its primary cofactor, the corepressor for element-1-silencing transcription factor (CoREST), to genomic loci that contain the repressor element-1 (RE1) binding motif. While REST was initially believed to silence RE1 containing neuronal genes in neural stem cells (NSCs) and non-neuronal cells, emerging evidence shows an increasingly complex cell type- and developmental stage-specific repertoire of REST target genes and functions that include regulation of neuronal lineage maturation and plasticity. Methodology/Principal Findings In this study, we utilized chromatin immunoprecipitation on chip (ChIP-chip) analysis to examine REST and CoREST functions during NSC-mediated specification of cholinergic neurons (CHOLNs), GABAergic neurons (GABANs), glutamatergic neurons (GLUTNs), and medium spiny projection neurons (MSNs). We identified largely distinct but overlapping profiles of REST and CoREST target genes during neuronal subtype specification including a disproportionately high percentage that are exclusive to each neuronal subtype. Conclusions/Significance Our findings demonstrate that the differential deployment of REST and CoREST is an important regulatory mechanism that mediates neuronal subtype specification by modulating specific gene networks responsible for inducing and maintaining neuronal subtype identity. Our observations also implicate a broad array of factors in the generation of neuronal diversity including but not limited to those that mediate homeostasis, cell cycle dynamics, cell viability, stress responses and epigenetic regulation.


Cell Cycle | 2010

REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions

Irfan A. Qureshi; Solen Gokhan; Mark F. Mehler

Complementary transcriptional and epigenetic regulatory factors (e.g., histone and chromatin modifying enzymes and non-coding RNAs) regulate genes responsible for mediating neural stem cell maintenance and lineage restriction, neuronal and glial lineage specification, and progressive stages of lineage maturation. However, an overall understanding of the mechanisms that sense and integrate developmental signals at the genomic level and control cell type-specific gene network deployment has not emerged. REST and CoREST are central players in the transcriptional and epigenetic regulatory circuitry that is responsible for modulating neural genes, and they have been implicated in establishing cell identity and function, both within the nervous system and beyond it. Herein, we discuss the emerging context-specific roles of REST and CoREST and highlight our recent studies aimed at elucidating their neural developmental cell type- and stage-specific actions. These observations support the conclusion that REST and CoREST act as master regulators of key neural cell fate decisions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington's disease

Aldrin E. Molero; Solen Gokhan; Sara González; Jessica L. Feig; Lucien C. Alexandre; Mark F. Mehler

The pathogenesis of Huntingtons disease (HD) remains elusive. The identification of increasingly early pathophysiological abnormalities in HD suggests the possibility that impairments of striatal medium spiny neuron (MSN) specification and maturation may underlie the etiology of HD. In fact, we demonstrate that HD knock-in (Hdh-Q111) mice exhibited delayed acquisition of early striatal cytoarchitecture with aberrant expression of progressive markers of MSN neurogenesis (Islet1, DARPP-32, mGluR1, and NeuN). Hdh-Q111 striatal progenitors also displayed delayed cell cycle exit between E13.5–15.5 (BrdU birth-dating) and an enhanced fraction of abnormal cycling cells in association with expansion of the pool of intermediate progenitors and over expression of the core pluripotency (PP) factor, Sox2. Clonal analysis further revealed that Hdh-Q111 neural stem cells (NSCs) displayed: impaired lineage restriction, reduced proliferative potential, enhanced late-stage self-renewal, and deregulated MSN subtype specification. Further, our analysis revealed that in addition to Sox2, the core PP factor, Nanog is expressed within the striatal generative and mantle regions, and in Hdh-Q111 embryos the fraction of Nanog-expressing MSN precursors was substantially increased. Moreover, compared to Hdh-Q18 embryos, the Hdh-Q111 striatal anlagen exhibited significantly higher levels of the essential PP cofactor, Stat3. These findings suggest that Sox2 and Nanog may play roles during a selective window of embryonic brain maturation, and alterations of these factors may, in part, be responsible for mediating the aberrant program of Hdh-Q111 striatal MSN specification and maturation. We propose that these HD-associated developmental abnormalities might compromise neuronal homeostasis and subsequently render MSNs more vulnerable to late life stressors.


PLOS ONE | 2009

Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

Joseph J. Abrajano; Irfan A. Qureshi; Solen Gokhan; Deyou Zheng; Aviv Bergman; Mark F. Mehler

Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the coupling of neurogenesis and gliogenesis and neuronal-glial interactions that underlie synaptic and neural network plasticity and homeostasis in health and in specific neurological disease states.

Collaboration


Dive into the Solen Gokhan's collaboration.

Top Co-Authors

Avatar

Mark F. Mehler

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Richard Stanley

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joseph J. Abrajano

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Aviv Bergman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Deyou Zheng

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Gulinello

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sayan Nandi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Haishan Lin

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge