Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solveig Pettersen is active.

Publication


Featured researches published by Solveig Pettersen.


Nature Communications | 2012

Lysine methylation of VCP by a member of a novel human protein methyltransferase family.

Stefan Kernstock; Erna Davydova; Magnus E. Jakobsson; Anders Moen; Solveig Pettersen; Gunhild M. Mælandsmo; Wolfgang Egge-Jacobsen; Pål Ø. Falnes

Valosin-containing protein (VCP, also called p97) is an essential and highly conserved adenosine triphosphate-dependent chaperone implicated in a wide range of cellular processes in eukaryotes, and mild VCP mutations can cause severe neurodegenerative disease. Here we show that mammalian VCP is trimethylated on Lys315 in a variety of cell lines and tissues, and that the previously uncharacterized protein METTL21D (denoted here as VCP lysine methyltransferase, VCP-KMT) is the responsible enzyme. VCP methylation was abolished in three human VCP-KMT knockout cell lines generated with zinc-finger nucleases. Interestingly, VCP-KMT was recently reported to promote tumour metastasis, and indeed, VCP-KMT-deficient cells displayed reduced growth rate, migration and invasive potential. Finally, we present data indicating that VCP-KMT, calmodulin-lysine methyltransferase and eight uncharacterized proteins together constitute a novel human protein methyltransferase family. The present work provides new insights on protein methylation and its links to human disease.


PLOS ONE | 2013

Nuclear Legumain Activity in Colorectal Cancer

Mads H. Haugen; Harald Thidemann Johansen; Solveig Pettersen; Rigmor Solberg; Klaudia Brix; Kjersti Flatmark; Gunhild M. Mælandsmo

The cysteine protease legumain is involved in several biological and pathological processes, and the protease has been found over-expressed and associated with an invasive and metastatic phenotype in a number of solid tumors. Consequently, legumain has been proposed as a prognostic marker for certain cancers, and a potential therapeutic target. Nevertheless, details on how legumain advances malignant progression along with regulation of its proteolytic activity are unclear. In the present work, legumain expression was examined in colorectal cancer cell lines. Substantial differences in amounts of pro- and active legumain forms, along with distinct intracellular distribution patterns, were observed in HCT116 and SW620 cells and corresponding subcutaneous xenografts. Legumain is thought to be located and processed towards its active form primarily in the endo-lysosomes; however, the subcellular distribution remains largely unexplored. By analyzing subcellular fractions, a proteolytically active form of legumain was found in the nucleus of both cell lines, in addition to the canonical endo-lysosomal residency. In situ analyses of legumain expression and activity confirmed the endo-lysosomal and nuclear localizations in cultured cells and, importantly, also in sections from xenografts and biopsies from colorectal cancer patients. In the HCT116 and SW620 cell lines nuclear legumain was found to make up approximately 13% and 17% of the total legumain, respectively. In similarity with previous studies on nuclear variants of related cysteine proteases, legumain was shown to process histone H3.1. The discovery of nuclear localized legumain launches an entirely novel arena of legumain biology and functions in cancer.


International Journal of Cancer | 2011

Osteopontin - An important downstream effector of S100A4-mediated invasion and metastasis

Gisle Berge; Solveig Pettersen; Ida Grotterød; Ingrid J. Bettum; Kjetil Boye; Gunhild M. Mælandsmo

Substantial evidence has linked the small calcium‐binding protein S100A4 to metastatic progression. S100A4‐mediated effects include stimulation of angiogenesis, regulation of cell death and increased cell motility and invasion, but the exact molecular mechanisms by which the protein exerts these effects are incompletely elucidated. In the present study, we demonstrate that S100A4 induces NF‐κB‐dependent expression and secretion of osteopontin (OPN) in a selection of osteosarcoma cell lines. OPN is, as S100A4, known to result in a variety of cellular effects potentially leading to increased angiogenesis and metastasis, and several of the activated signaling pathways are common for the two proteins. In our study, extracellular S100A4 was found to upregulate enzymes of the plasminogen activator system and matrix metalloproteinase (MMP) family, especially urokinase plasminogen activator and MMP‐13. Furthermore, increased motility and invasion was observed in vitro as a result of S100A4 treatment. OPN expression was inhibited by the use of siRNA molecules, and a partial blocking of S100A4‐induced effects on protease expression and invasive capacity was detected. In conclusion, our results suggest regulation of OPN as a downstream molecular mechanism of S100A4 signaling. This novel finding adds more information to how S100A4 mediates tumor development and metastatic progression. The observation of a link between S100A4 and OPN, and also identification of common downstream effect molecules, highlights them, their receptors or downstream proteins, as targets for therapeutic approaches.


Biochimie | 2012

Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M

Robert Smith; Harald Thidemann Johansen; Hilde Nilsen; Mads H. Haugen; Solveig Pettersen; Gunhild M. Mælandsmo; Magnus Abrahamson; Rigmor Solberg

Legumain, an asparaginyl endopeptidase, is up-regulated in tumour and tumour-associated cells, and is linked to the processing of cathepsin B, L, and proMMP-2. Although legumain is mainly localized to the endosomal/lysosomal compartments, legumain has been reported to be localized extracellularly in the tumour microenvironment and associated with extracellular matrix and cell surfaces. The most potent endogenous inhibitor of legumain is cystatin E/M, which is a secreted protein synthesised with an export signal. Therefore, we investigated the cellular interplay between legumain and cystatin E/M. As a cell model, HEK293 cells were transfected with legumain cDNA, cystatin E/M cDNA, or both, and over-expressing monoclonal cell lines were selected (termed M38L, M4C, and M3CL, respectively). Secretion of prolegumain from M38L cells was inhibited by treatment with brefeldin A, whereas bafilomycin A1 enhanced the secretion. Cellular processing of prolegumain to the 46 and 36 kDa enzymatically active forms was reduced by treatment with either substance alone. M38L cells showed increased, but M4C cells decreased, cathepsin L processing suggesting a crucial involvement of legumain activity. Furthermore, we observed internalization of cystatin E/M and subsequently decreased intracellular legumain activity. Also, prolegumain was shown to internalize followed by increased intracellular legumain processing and activation. In addition, in M4C cells incomplete processing of the internalized prolegumain was observed, as well as nuclear localized cystatin E/M. Furthermore, auto-activation of secreted prolegumain was inhibited by cystatin E/M, which for the first time shows a regulatory role of cystatin E/M in controlling both intra- and extracellular legumain activity.


Shock | 2005

Peptidoglycan of staphyloccus aureus induces enhanced levels of matrix metalloproteinase-9 in human blood originating from neutrophils

Yun Yong Wang; Anders E. Myhre; Solveig Pettersen; Maria K. Dahle; Simon J. Foster; Christoph Thiemermann; Kristin Bjørnland; Ansgar O. Aasen; Jacob E. Wang

Enhanced plasma levels of matrix metalloproteinase 9 (MMP-9) detected in patients with severe sepsis are thought to contribute to the development of organ dysfunction in endotoxemia. We have recently reported that peptidoglycan, the major wall component of gram-positive bacteria, increases MMP-9 levels in lung and liver and organ injury in the rat. Thus far, it is unclear whether MMP-9 is part of the septic response to peptidoglycan in human blood. The aim of the present study was to examine the regulation of MMP-9 by peptidoglycan in human leukocytes. The addition of peptidoglycan to whole human blood caused enhanced levels of MMP-9 after 1 h of incubation (306 vs. 75 ng/mL, P ≤ 0.05) and onward, as measured by enzyme-linked immunoabsorbant assay. In neutrophil cultures, MMP-9 values increased significantly after 30 min of incubation with peptidoglycan (242 vs. 121 ng/mL, P ≤ 0.05), whereas muramyl dipeptide had no effect. In contrast, adherent monocytes released insignificant amounts of MMP-9. To examine whether the released MMP-9 resulted from de novo synthesis, intracellular and secreted MMP-9 was measured during stimulation of neutrophils. The total MMP-9 values (the sum of intracellular and secreted MMP-9) before and after stimulation were mainly unaltered. The enhanced MMP-9 levels induced by peptidoglycan was attenuated by inhibitors of p38 mitogen-activated protein kinases (MAPK), (SB202190, 25 μM) and ERK1/2 (PD98059, 25 μM) and inhibitors of Src Tyrosine kinase (PP2, 5 μM) and PI3-K (LY294002, 25 μM).


Cancer Letters | 2014

Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties

Ingrid J. Bettum; Kotryna Vasiliauskaite; Vigdis Nygaard; Trevor Clancy; Solveig Pettersen; Ellen Tenstad; Gunhild M. Mælandsmo; Lina Prasmickaite

Tumor cells have the ability to exploit stromal cells to facilitate metastasis. By using malignant melanoma as a model, we show that the stroma adjacent to metastatic lesions is enriched in the known metastasis-promoting protein S100A4. S100A4 stimulates cancer cells to secrete paracrine factors, such as inflammatory cytokines IL8, CCL2 and SAA, which activate stromal cells (endothelial cells and monocytes) so that they acquire tumor-supportive properties. Our data establishes S100A4 as an inducer of a cytokine network enabling tumor cells to engage angiogenic and inflammatory stromal cells, which might contribute to pro-metastatic activity of S100A4.


Cancer Letters | 2015

Metabolic reprogramming supports the invasive phenotype in malignant melanoma

Ingrid J. Bettum; Saurabh Sayajirao Gorad; Anna Barkovskaya; Solveig Pettersen; Siver A. Moestue; Kotryna Vasiliauskaite; Ellen Tenstad; Tove Øyjord; Øystein Risa; Vigdis Nygaard; Gunhild M. Mælandsmo; Lina Prasmickaite

Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.


Shock | 2004

Peptidoglycan of S. aureus causes increased levels of matrix metalloproteinases in the rat.

Jacob E. Wang; Solveig Pettersen; Jon Fredrik Stuestøl; Yun Yong Wang; Simon J. Foster; Christoph Thiemermann; Ansgar O. Aasen; Kristin Bjørnland

Matrix metalloproteinases (MMPs) have been suggested to contribute to the organ injury in septic patients. We recently demonstrated that peptidoglycan (PepG) of S. aureus causes organ injury in the rat. A possible role for MMPs in the septic response to PepG is unknown. In the present study, we have examined whether the release of MMP-9 (gelatinase B) and MMP-2 (gelatinase A) is induced by PepG in the anesthetized rat. Male Wistar rats were injected intravenously with PepG (10 mg/kg), LPS (1 mg/kg), or a combination of LPS and PepG (1 mg/kg of each). After 1 or 3 h, liver, lung, and plasma were harvested. MMP-9 and MMP-2 levels were analyzed in organ homogenates and in plasma samples by zymography. MMP-9 levels were significantly increased in the lung within 1 h after injection of PepG, LPS, or combined treatment, compared with sham animals (P ≤ 0.05). In the liver and plasma, MMP-9 was clearly increased by PepG or LPS at both 1 and 3 h compared with sham animals (P ≤ 0.05). Considerable basal amounts of MMP-2 protein were seen in the liver and in plasma. In the lung, MMP-2 levels were elevated by combined LPS/PepG at 1 h and by LPS at 3 h (P ≤ 0.05). In contrast, MMP-2 activity in the liver was significantly reduced by bacterial products. In the plasma, no major alterations of MMP-2 levels were observed. Our data show that PepG of S. aureus causes a rapid elevation of MMP-9 protein in the liver, lung, and blood of the rat. Based on these and previous data, we hypothesize that the release of MMP-9 in lung, liver, and blood is part of the septic host response to systemic PepG.


European Journal of Cancer | 2015

High expression of the cysteine proteinase legumain in colorectal cancer – Implications for therapeutic targeting

Mads H. Haugen; Kjetil Boye; J. M. Nesland; Solveig Pettersen; Eivind Valen Egeland; Tripti Tamhane; Klaudia Brix; Gunhild M. Mælandsmo; Kjersti Flatmark

BACKGROUND The cysteine proteinase legumain is highly expressed in cancer. Legumain is a potential biomarker and has been suggested to be utilised for prodrug activation in cancer therapy. However, to define the suitability of legumain for such purposes, detailed knowledge of cell type-specific and subcellular expression together with proteolytic activity patterns in tumour tissue is necessary. METHODS Expression of legumain was examined in a panel of 277 primary tumours from colorectal cancer (CRC) patients using immunohistochemistry. Tumour (cytoplasmic diffuse, cytoplasmic granulated, and nuclear) and stromal cell expression of legumain was quantified, and associations with clinicopathological parameters and outcome were analysed. Additionally, normal colon tissue and spontaneous mouse tumours were stained for legumain. RESULTS Legumain was highly expressed in tumour and stromal cells. Nuclear legumain was detected in 30% of the tumours. In colon cancer patients, high legumain expression was associated with overall and metastasis-free survival (OS; MFS) in uni- and multivariate analysis. Nuclear legumain was associated with poor OS, but not MFS in the colon cancer subgroup. Cytoplasmic granulated or diffuse expression was not associated with OS or MFS. Normal epithelial cells exhibited granulated legumain mainly at the apical pole, and legumain was highly expressed in CD68 positive macrophages. CONCLUSIONS Legumain is a highly expressed proteinase in CRC and associated with poor outcome in colon cancer. Diversified localisation of legumain expression in tumour and stromal cells suggests multiple functions in CRC, representing both a challenge and an opportunity for use in therapeutic targeting.


Clinical & Experimental Metastasis | 2015

Enrichment of nuclear S100A4 during G2/M in colorectal cancer cells: possible association with cyclin B1 and centrosomes

Eivind Valen Egeland; Kjetil Boye; Solveig Pettersen; Mads H. Haugen; Tove Øyjord; Lene Malerød; Kjersti Flatmark; Gunhild M. Mælandsmo

Abstract S100A4 promotes metastasis in several types of cancer, but the involved molecular mechanisms are still incompletely described. The protein is associated with a wide variety of biological functions and it locates to different subcellular compartments, including nuclei, cytoplasm and extracellular space. Nuclear expression of S100A4 has been associated with more advanced disease stage as well as poor outcome in colorectal cancer (CRC). The present study was initiated to investigate the nuclear function of S100A4 and thereby unravel potential biological mechanisms linking nuclear expression to a more aggressive phenotype. CRC cell lines show heterogeneity in nuclear S100A4 expression and preliminary experiments revealed cells in G2/M to have increased nuclear accumulation compared to G1 and S cells, respectively. Synchronization experiments validated nuclear S100A4 expression to be most prominent in the G2/M phase, but manipulating nuclear levels of S100A4 using lentiviral modified cells failed to induce changes in cell cycle distribution and proliferation. Proximity ligation assay did, however, demonstrate proximity between S100A4 and cyclin B1 in vitro, while confocal microscopy showed S100A4 to localize to areas corresponding to centrosomes in mitotic cells prior to chromosome segregation. This might indicate a novel and uncharacterized function of the metastasis-associated protein in CRC cells.

Collaboration


Dive into the Solveig Pettersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mads H. Haugen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kjetil Boye

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaudia Brix

Jacobs University Bremen

View shared research outputs
Researchain Logo
Decentralizing Knowledge