Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja Wolter is active.

Publication


Featured researches published by Sonja Wolter.


Journal of Geophysical Research | 2014

A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver‐Julesburg Basin

Gabrielle Pétron; Anna Karion; Colm Sweeney; Benjamin R. Miller; Stephen A. Montzka; G. J. Frost; M. Trainer; Pieter P. Tans; Arlyn E. Andrews; Jonathan Kofler; Detlev Helmig; Douglas Guenther; E. J. Dlugokencky; Patricia M. Lang; Tim Newberger; Sonja Wolter; B. D. Hall; Paul C. Novelli; Alan Brewer; Stephen Conley; Mike Hardesty; Robert M. Banta; Allen B. White; David Noone; Dan Wolfe; Russ Schnell

Emissions of methane (CH4) from oil and natural gas (O&G) operations in the most densely drilled area of the Denver-Julesburg Basin in Weld County located in northeastern Colorado are estimated for 2 days in May 2012 using aircraft-based CH4 observations and planetary boundary layer height and ground-based wind profile measurements. Total top-down CH4 emission estimates are 25.8 ± 8.4 and 26.2 ± 10.7 t CH4/h for the 29 and 31 May flights, respectively. Using inventory data, we estimate the total emissions of CH4 from non-O&G gas-related sources at 7.1 ± 1.7 and 6.3 ± 1.0 t CH4/h for these 2 days. The difference in emissions is attributed to O&G sources in the study region, and their total emission is on average 19.3 ± 6.9 t/h, close to 3 times higher than an hourly emission estimate based on Environmental Protection Agencys Greenhouse Gas Reporting Program data for 2012. We derive top-down emissions estimates for propane, n-butane, i-pentane, n-pentane, and benzene from our total top-down CH4 emission estimate and the relative hydrocarbon abundances in aircraft-based discrete air samples. Emissions for these five nonmethane hydrocarbons alone total 25.4 ± 8.2 t/h. Assuming that these emissions are solely originating from O&G-related activities in the study region, our results show that the state inventory for total volatile organic compounds emitted by O&G activities is at least a factor of 2 too low for May 2012. Our top-down emission estimate of benzene emissions from O&G operations is 173 ± 64 kg/h, or 7 times larger than in the state inventory.


Environmental Science & Technology | 2015

Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region

Anna Karion; Colm Sweeney; Eric A. Kort; Paul B. Shepson; Alan Brewer; Maria O. L. Cambaliza; Stephen Conley; Kenneth J. Davis; Aijun Deng; Mike Hardesty; Scott C. Herndon; Thomas Lauvaux; Tegan N. Lavoie; David R. Lyon; Tim Newberger; Gabrielle Pétron; Chris W. Rella; Mackenzie L. Smith; Sonja Wolter; Tara I. Yacovitch; Pieter P. Tans

We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPAs Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.


Journal of Geophysical Research | 2015

Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network

Colm Sweeney; Anna Karion; Sonja Wolter; Timothy Newberger; Doug Guenther; Jack A. Higgs; Arlyn E. Andrews; Patricia M. Lang; Don Neff; E. J. Dlugokencky; J. B. Miller; Stephen A. Montzka; B. R. Miller; Ken Masarie; Sebastien Biraud; Paul C. Novelli; Molly Crotwell; Andrew M. Crotwell; Kirk Thoning; Pieter P. Tans

Seasonal spatial and temporal gradients for the CO2 mole fraction over North America are examined by creating a climatology from data collected 2004–2013 by the NOAA/ESRL Global Greenhouse Gas Reference Network Aircraft Program relative to trends observed for CO2 at the Mauna Loa Observatory. The data analyzed are from measurements of air samples collected in specially fabricated flask packages at frequencies of days to months at 22 sites over continental North America and shipped back to Boulder, Colorado, for analysis. These measurements are calibrated relative to the CO2 World Meteorological Organization mole fraction scale. The climatologies of CO2 are compared to climatologies of CO, CH4, SF6, N2O (which are also measured from this sampling program), and winds to understand the dominant transport and chemical and biological processes driving changes in the spatial and temporal mole fractions of CO2 as air passes over continental North America. The measurements show that air masses coming off the Pacific on the west coast of North America are relatively homogeneous with altitude. As air masses flow eastward, the lower section from the surface to 4000 m above sea level (masl) becomes distinctly different from the 4000–8000 masl section of the column. This is due in part to the extent of the planetary boundary layer, which is directly impacted by continental sources and sinks, and to the vertical gradient in west-to-east wind speeds. The slowdown and southerly shift in winds at most sites during summer months amplify the summertime drawdown relative to what might be expected from local fluxes. This influence counteracts the dilution of summer time CO2 drawdown (known as the “rectifier effect”) as well as changes the surface influence “footprint” for each site. An early start to the summertime drawdown, a pronounced seasonal cycle in the column mean (500 to 8000 masl), and small vertical gradients in CO2, CO, CH4, SF6, and N2O at high-latitude western sites such as Poker Flat, Alaska, suggest recent influence of transport from southern latitudes and not local processes. This transport pathway provides a significant contribution to the large seasonal cycle observed in the high latitudes at all altitudes sampled. A sampling analysis of the NOAA/ESRL CarbonTracker model suggests that the average sampling resolution of 22 days is sufficient to get a robust estimate of mean seasonal cycle of CO2 during this 10 year period but insufficient to detect interannual variability in emissions over North America.


Journal of Geophysical Research | 2016

Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota

J. Peischl; Anna Karion; Colm Sweeney; Eric A. Kort; Mackenzie L. Smith; Adam R. Brandt; Tim Yeskoo; K. C. Aikin; Stephen Conley; Alexander Gvakharia; M. Trainer; Sonja Wolter; T. B. Ryerson

We present in situ airborne measurements of methane (CH4) and ethane (C2H6) taken aboard a NOAA DHC-6 Twin Otter research aircraft in May 2014 over the Williston Basin in northwestern North Dakota, a region of rapidly growing oil and natural gas production. The Williston Basin is best known for the Bakken shale formation, from which a significant increase in oil and gas extraction has occurred since 2009. We derive a CH4 emission rate from this region using airborne data by calculating the CH4 enhancement flux through the planetary boundary layer downwind of the region. We calculate CH4 emissions of (36 ± 13), (27 ± 13), (27 ± 12), (27 ± 12), and (25 ± 10) × 103 kg/h from five transects on 3 days in May 2014 downwind of the Bakken shale region of North Dakota. The average emission, (28 ± 5) × 103 kg/h, extrapolates to 0.25 ± 0.05 Tg/yr, which is significantly lower than a previous estimate of CH4 emissions from northwestern North Dakota and southeastern Saskatchewan using satellite remote sensing data. We attribute the majority of CH4 emissions in the region to oil and gas operations in the Bakken based on the similarity between atmospheric C2H6 to CH4 enhancement ratios and the composition of raw natural gas withdrawn from the region.


Geophysical Research Letters | 2016

No significant increase in long‐term CH4 emissions on North Slope of Alaska despite significant increase in air temperature

Colm Sweeney; E. J. Dlugokencky; Charles E. Miller; Steven C. Wofsy; Anna Karion; Steve J. Dinardo; Rachel Chang; J. B. Miller; Lori Bruhwiler; Andrew M. Crotwell; Tim Newberger; Kathryn McKain; Robert S. Stone; Sonja Wolter; Patricia E. Lang; Pieter P. Tans

Continuous measurements of atmospheric methane (CH4) mole fractions measured by NOAAs Global Greenhouse Gas Reference Network in Barrow, AK (BRW), show strong enhancements above background values when winds come from the land sector from July to December from 1986 to 2015, indicating that emissions from arctic tundra continue through autumn and into early winter. Twenty-nine years of measurements show little change in seasonal mean land sector CH4 enhancements, despite an increase in annual mean temperatures of 1.2 ± 0.8°C/decade (2σ). The record does reveal small increases in CH4 enhancements in November and December after 2010 due to increased late-season emissions. The lack of significant long-term trends suggests that more complex biogeochemical processes are counteracting the observed short-term (monthly) temperature sensitivity of 5.0 ± 3.6 ppb CH4/°C. Our results suggest that even the observed short-term temperature sensitivity from the Arctic will have little impact on the global atmospheric CH4 budget in the long term if future trajectories evolve with the same temperature sensitivity.


Environmental Science & Technology | 2017

Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements

Stefan Schwietzke; Gabrielle Petron; Stephen Conley; Ingrid Mielke-Maday; E. J. Dlugokencky; Pieter P. Tans; Tim Vaughn; Clay S. Bell; Daniel Zimmerle; Sonja Wolter; C. W. King; Allen B. White; Timothy Coleman; Laura Bianco; Russell C. Schnell

Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. Our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R2 = 0.75) and active gas well pad count (R2 = 0.81), and (iii) 2× higher emissions in the western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ∼1/3 of the total emissions detected midday by the aircraft and ∼2/3 of the west-east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. While the aircraft approach is valid, quantitative, and independent, our study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.


Environmental Science & Technology | 2017

Airborne Quantification of Methane Emissions over the Four Corners Region

Mackenzie L. Smith; Alexander Gvakharia; Eric A. Kort; Colm Sweeney; Stephen Conley; Ian C. Faloona; Tim Newberger; Russell C. Schnell; Stefan Schwietzke; Sonja Wolter

Methane (CH4) is a potent greenhouse gas and the primary component of natural gas. The San Juan Basin (SJB) is one of the largest coal-bed methane producing regions in North America and, including gas production from conventional and shale sources, contributed ∼2% of U.S. natural gas production in 2015. In this work, we quantify the CH4 flux from the SJB using continuous atmospheric sampling from aircraft collected during the TOPDOWN2015 field campaign in April 2015. Using five independent days of measurements and the aircraft-based mass balance method, we calculate an average CH4 flux of 0.54 ± 0.20 Tg yr-1 (1σ), in close agreement with the previous space-based estimate made for 2003-2009. These results agree within error with the U.S. EPA gridded inventory for 2012. These flights combined with the previous satellite study suggest CH4 emissions have not changed. While there have been significant declines in natural gas production between measurements, recent increases in oil production in the SJB may explain why emission of CH4 has not declined. Airborne quantification of outcrops where seepage occurs are consistent with ground-based studies that indicate these geological sources are a small fraction of the basin total (0.02-0.12 Tg yr-1) and cannot explain basinwide consistent emissions from 2003 to 2015.


Geophysical Research Letters | 2013

Methane emissions estimate from airborne measurements over a western United States natural gas field

Anna Karion; Colm Sweeney; Gabrielle Pétron; G. J. Frost; R. Michael Hardesty; Jonathan Kofler; B. R. Miller; Tim Newberger; Sonja Wolter; Robert M. Banta; Alan Brewer; E. J. Dlugokencky; Patricia M. Lang; Stephen A. Montzka; Russell C. Schnell; Pieter P. Tans; M. Trainer; Robert J. Zamora; Stephen Conley


Atmospheric Chemistry and Physics | 2015

Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

Anna Karion; Colm Sweeney; J. B. Miller; Arlyn E. Andrews; R. Commane; Steven J. Dinardo; John M. Henderson; Jacob Lindaas; John C. Lin; Kristina A. Luus; Tim Newberger; Pieter P. Tans; Steven C. Wofsy; Sonja Wolter; Charles E. Miller


Atmospheric Chemistry and Physics | 2014

A high ozone episode in winter 2013 in the Uinta Basin oil and gas region characterized by aircraft measurements

Samuel J. Oltmans; Anna Karion; Russell C. Schnell; Gabrielle Pétron; Colm Sweeney; Sonja Wolter; D. Neff; S. A. Montzka; B. R. Miller; Detlev Helmig; Bryan J. Johnson; J. Hueber

Collaboration


Dive into the Sonja Wolter's collaboration.

Top Co-Authors

Avatar

Colm Sweeney

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Anna Karion

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Patricia M. Lang

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Pieter P. Tans

Earth System Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Stephen Conley

University of California

View shared research outputs
Top Co-Authors

Avatar

Tim Newberger

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Arlyn E. Andrews

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Gabrielle Pétron

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Alan Brewer

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Crotwell

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge