Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Karion is active.

Publication


Featured researches published by Anna Karion.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Toward a better understanding and quantification of methane emissions from shale gas development

Dana R. Caulton; Paul B. Shepson; Renee Santoro; Jed P. Sparks; Robert W. Howarth; Anthony R. Ingraffea; Maria O. L. Cambaliza; Colm Sweeney; Anna Karion; Kenneth J. Davis; Brian H. Stirm; Stephen A. Montzka; B. R. Miller

Significance We identified a significant regional flux of methane over a large area of shale gas wells in southwestern Pennsylvania in the Marcellus formation and further identified several pads with high methane emissions. These shale gas pads were identified as in the drilling process, a preproduction stage not previously associated with high methane emissions. This work emphasizes the need for top-down identification and component level and event driven measurements of methane leaks to properly inventory the combined methane emissions of natural gas extraction and combustion to better define the impacts of our nation’s increasing reliance on natural gas to meet our energy needs. The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0–14 g CH4 s−1 km−2, was quantified for a ∼2,800-km2 area, which did not differ statistically from a bottom-up inventory, 2.3–4.6 g CH4 s−1 km−2. Large emissions averaging 34 g CH4/s per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ∼1% of the total number of wells, account for 4–30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.


Journal of Geophysical Research | 2014

A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver‐Julesburg Basin

Gabrielle Pétron; Anna Karion; Colm Sweeney; Benjamin R. Miller; Stephen A. Montzka; G. J. Frost; M. Trainer; Pieter P. Tans; Arlyn E. Andrews; Jonathan Kofler; Detlev Helmig; Douglas Guenther; E. J. Dlugokencky; Patricia M. Lang; Tim Newberger; Sonja Wolter; B. D. Hall; Paul C. Novelli; Alan Brewer; Stephen Conley; Mike Hardesty; Robert M. Banta; Allen B. White; David Noone; Dan Wolfe; Russ Schnell

Emissions of methane (CH4) from oil and natural gas (O&G) operations in the most densely drilled area of the Denver-Julesburg Basin in Weld County located in northeastern Colorado are estimated for 2 days in May 2012 using aircraft-based CH4 observations and planetary boundary layer height and ground-based wind profile measurements. Total top-down CH4 emission estimates are 25.8 ± 8.4 and 26.2 ± 10.7 t CH4/h for the 29 and 31 May flights, respectively. Using inventory data, we estimate the total emissions of CH4 from non-O&G gas-related sources at 7.1 ± 1.7 and 6.3 ± 1.0 t CH4/h for these 2 days. The difference in emissions is attributed to O&G sources in the study region, and their total emission is on average 19.3 ± 6.9 t/h, close to 3 times higher than an hourly emission estimate based on Environmental Protection Agencys Greenhouse Gas Reporting Program data for 2012. We derive top-down emissions estimates for propane, n-butane, i-pentane, n-pentane, and benzene from our total top-down CH4 emission estimate and the relative hydrocarbon abundances in aircraft-based discrete air samples. Emissions for these five nonmethane hydrocarbons alone total 25.4 ± 8.2 t/h. Assuming that these emissions are solely originating from O&G-related activities in the study region, our results show that the state inventory for total volatile organic compounds emitted by O&G activities is at least a factor of 2 too low for May 2012. Our top-down emission estimate of benzene emissions from O&G operations is 173 ± 64 kg/h, or 7 times larger than in the state inventory.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Cold season emissions dominate the Arctic tundra methane budget

Donatella Zona; Beniamino Gioli; R. Commane; Jakob Lindaas; Steven C. Wofsy; Charles E. Miller; Steven J. Dinardo; Sigrid Dengel; Colm Sweeney; Anna Karion; Rachel Chang; John M. Henderson; Patrick C. Murphy; Jordan Paul Goodrich; Virginie Moreaux; Anna Liljedahl; Jennifer D. Watts; John S. Kimball; David A. Lipson; Walter C. Oechel

Significance Arctic ecosystems are major global sources of methane. We report that emissions during the cold season (September to May) contribute ≥50% of annual sources of methane from Alaskan tundra, based on fluxes obtained from eddy covariance sites and from regional fluxes calculated from aircraft data. The largest emissions were observed at the driest site (<5% inundation). Emissions of methane in the cold season are linked to the extended “zero curtain” period, where soil temperatures are poised near 0 °C, indicating that total emissions are very sensitive to soil climate and related factors, such as snow depth. The dominance of late season emissions, sensitivity to soil conditions, and importance of dry tundra are not currently simulated in most global climate models. Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Environmental Science & Technology | 2015

Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region

Anna Karion; Colm Sweeney; Eric A. Kort; Paul B. Shepson; Alan Brewer; Maria O. L. Cambaliza; Stephen Conley; Kenneth J. Davis; Aijun Deng; Mike Hardesty; Scott C. Herndon; Thomas Lauvaux; Tegan N. Lavoie; David R. Lyon; Tim Newberger; Gabrielle Pétron; Chris W. Rella; Mackenzie L. Smith; Sonja Wolter; Tara I. Yacovitch; Pieter P. Tans

We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPAs Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.


Journal of Geophysical Research | 2015

Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment

Jocelyn Turnbull; Colm Sweeney; Anna Karion; Timothy Newberger; Scott J. Lehman; Pieter P. Tans; Kenneth J. Davis; Thomas Lauvaux; Natasha L. Miles; Scott J. Richardson; Maria O. L. Cambaliza; Paul B. Shepson; Kevin Robert Gurney; Risa Patarasuk; Igor Razlivanov

The Indianapolis Flux Experiment (INFLUX) aims to develop and assess methods for quantifying urban greenhouse gas emissions. Here we use CO2, 14CO2, and CO measurements from tall towers around Indianapolis, USA, to determine urban total CO2, the fossil fuel derived CO2 component (CO2ff), and CO enhancements relative to background measurements. When a local background directly upwind of the urban area is used, the wintertime total CO2 enhancement over Indianapolis can be entirely explained by urban CO2ff emissions. Conversely, when a continental background is used, CO2ff enhancements are larger and account for only half the total CO2 enhancement, effectively representing the combined CO2ff enhancement from Indianapolis and the wider region. In summer, we find that diurnal variability in both background CO2 mole fraction and covarying vertical mixing makes it difficult to use a simple upwind-downwind difference for a reliable determination of total CO2 urban enhancement. We use characteristic CO2ff source sector CO:CO2ff emission ratios to examine the contribution of the CO2ff source sectors to total CO2ff emissions. This method is strongly sensitive to the mobile sector, which produces most CO. We show that the inventory-based emission product (“bottom up”) and atmospheric observations (“top down”) can be directly compared throughout the diurnal cycle using this ratio method. For Indianapolis, the top-down observations are consistent with the bottom-up Hestia data product emission sector patterns for most of the diurnal cycle but disagree during the nighttime hours. Further examination of both the top-down and bottom-up assumptions is needed to assess the exact cause of the discrepancy.


Journal of Atmospheric and Oceanic Technology | 2010

AirCore: An Innovative Atmospheric Sampling System

Anna Karion; Colm Sweeney; Pieter P. Tans; Timothy Newberger

Abstract This work describes the AirCore, a simple and innovative atmospheric sampling system. The AirCore used in this study is a 150-m-long stainless steel tube, open at one end and closed at the other, that relies on positive changes in ambient pressure for passive sampling of the atmosphere. The AirCore evacuates while ascending to a high altitude and collects a sample of the ambient air as it descends. It is sealed upon recovery and measured with a continuous analyzer for trace gas mole fraction. The AirCore tubing can be shaped into a variety of configurations to accommodate any sampling platform; for the testing done in this work it was shaped into a 0.75-m-diameter coil. Measurements of CO2 and CH4 mole fractions in laboratory tests indicate a repeatability and lack of bias to better than 0.07 ppm (one sigma) for CO2 and 0.4 ppb for CH4 under various conditions. Comparisons of AirCore data with flask data from aircraft flights indicate a standard deviation of differences of 0.3 ppm and 5 ppb for C...


Proceedings of the National Academy of Sciences of the United States of America | 2015

Reconciling divergent estimates of oil and gas methane emissions

Daniel Zavala-Araiza; David R. Lyon; Ramón A. Alvarez; Kenneth J. Davis; Robert C. Harriss; Scott C. Herndon; Anna Karion; Eric A. Kort; Brian K. Lamb; Xin Lan; Anthony J. Marchese; Stephen W. Pacala; Allen L. Robinson; Paul B. Shepson; Colm Sweeney; Robert W. Talbot; Amy Townsend-Small; Tara I. Yacovitch; Daniel Zimmerle; Steven P. Hamburg

Significance Past studies reporting divergent estimates of methane emissions from the natural gas supply chain have generated conflicting claims about the full greenhouse gas footprint of natural gas. Top-down estimates based on large-scale atmospheric sampling often exceed bottom-up estimates based on source-based emission inventories. In this work, we reconcile top-down and bottom-up methane emissions estimates in one of the country’s major natural gas production basins using easily replicable measurement and data integration techniques. These convergent emissions estimates provide greater confidence that we can accurately characterize the sources of emissions, including the large impact that a small proportion of high-emitters have on total emissions and determine the implications for mitigation. Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.


Journal of Geophysical Research | 2015

Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network

Colm Sweeney; Anna Karion; Sonja Wolter; Timothy Newberger; Doug Guenther; Jack A. Higgs; Arlyn E. Andrews; Patricia M. Lang; Don Neff; E. J. Dlugokencky; J. B. Miller; Stephen A. Montzka; B. R. Miller; Ken Masarie; Sebastien Biraud; Paul C. Novelli; Molly Crotwell; Andrew M. Crotwell; Kirk Thoning; Pieter P. Tans

Seasonal spatial and temporal gradients for the CO2 mole fraction over North America are examined by creating a climatology from data collected 2004–2013 by the NOAA/ESRL Global Greenhouse Gas Reference Network Aircraft Program relative to trends observed for CO2 at the Mauna Loa Observatory. The data analyzed are from measurements of air samples collected in specially fabricated flask packages at frequencies of days to months at 22 sites over continental North America and shipped back to Boulder, Colorado, for analysis. These measurements are calibrated relative to the CO2 World Meteorological Organization mole fraction scale. The climatologies of CO2 are compared to climatologies of CO, CH4, SF6, N2O (which are also measured from this sampling program), and winds to understand the dominant transport and chemical and biological processes driving changes in the spatial and temporal mole fractions of CO2 as air passes over continental North America. The measurements show that air masses coming off the Pacific on the west coast of North America are relatively homogeneous with altitude. As air masses flow eastward, the lower section from the surface to 4000 m above sea level (masl) becomes distinctly different from the 4000–8000 masl section of the column. This is due in part to the extent of the planetary boundary layer, which is directly impacted by continental sources and sinks, and to the vertical gradient in west-to-east wind speeds. The slowdown and southerly shift in winds at most sites during summer months amplify the summertime drawdown relative to what might be expected from local fluxes. This influence counteracts the dilution of summer time CO2 drawdown (known as the “rectifier effect”) as well as changes the surface influence “footprint” for each site. An early start to the summertime drawdown, a pronounced seasonal cycle in the column mean (500 to 8000 masl), and small vertical gradients in CO2, CO, CH4, SF6, and N2O at high-latitude western sites such as Poker Flat, Alaska, suggest recent influence of transport from southern latitudes and not local processes. This transport pathway provides a significant contribution to the large seasonal cycle observed in the high latitudes at all altitudes sampled. A sampling analysis of the NOAA/ESRL CarbonTracker model suggests that the average sampling resolution of 22 days is sufficient to get a robust estimate of mean seasonal cycle of CO2 during this 10 year period but insufficient to detect interannual variability in emissions over North America.


Environmental Science & Technology | 2015

Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions

Mackenzie L. Smith; Eric A. Kort; Anna Karion; Colm Sweeney; Scott C. Herndon; Tara I. Yacovitch

We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.


Journal of Geophysical Research | 2016

High‐resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX)

Thomas Lauvaux; Natasha L. Miles; Aijun Deng; Scott J. Richardson; Maria O. L. Cambaliza; Kenneth J. Davis; Brian J. Gaudet; Kevin Robert Gurney; Jianhua Huang; Darragh O'Keefe; Yang Song; Anna Karion; Tomohiro Oda; Risa Patarasuk; Igor Razlivanov; Daniel P. Sarmiento; Paul B. Shepson; Colm Sweeney; Jocelyn Turnbull; Kai Wu

Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

Collaboration


Dive into the Anna Karion's collaboration.

Top Co-Authors

Avatar

Colm Sweeney

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Paul B. Shepson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Davis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Pieter P. Tans

Earth System Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas Lauvaux

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasha L. Miles

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Wolter

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge