Tristan Rossignol
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tristan Rossignol.
Antimicrobial Agents and Chemotherapy | 2010
Govindsamy Vediyappan; Tristan Rossignol; Christophe d'Enfert
ABSTRACT Candida albicans can form biofilms that exhibit elevated intrinsic resistance to various antifungal agents, in particular azoles and polyenes. The molecular mechanisms involved in the antifungal resistance of biofilms remain poorly understood. We have used transcript profiling to explore the early transcriptional responses of mature C. albicans biofilms exposed to various antifungal agents. Mature C. albicans biofilms grown under continuous flow were exposed for as long as 2 h to concentrations of fluconazole (FLU), amphotericin B (AMB), and caspofungin (CAS) that, while lethal for planktonic cells, were not lethal for biofilms. Interestingly, FLU-exposed biofilms showed no significant changes in gene expression over the course of the experiment. In AMB-exposed biofilms, 2.7% of the genes showed altered expression, while in CAS-exposed biofilms, 13.0% of the genes had their expression modified. In particular, exposure to CAS resulted in the upregulation of hypha-specific genes known to play a role in biofilm formation, such as ALS3 and HWP1. There was little overlap between AMB- or CAS-responsive genes in biofilms and those that have been identified as AMB, FLU, or CAS responsive in C. albicans planktonic cultures. These results suggested that the resistance of C. albicans biofilms to azoles or polyenes was due not to the activation of specific mechanisms in response to exposure to these antifungals but rather to the intrinsic properties of the mature biofilms. In this regard, our study led us to observe that AMB physically bound C. albicans biofilms and beta-glucans, which have been proposed to be major constituents of the biofilm extracellular matrix and to prevent azoles from reaching biofilm cells. Thus, enhanced extracellular matrix or beta-glucan synthesis during biofilm growth might prevent antifungals, such as azoles and polyenes, from reaching biofilm cells, thus limiting their toxicity to these cells and the associated transcriptional responses.
Molecular Microbiology | 2011
Julie Bonhomme; Murielle Chauvel; Sophie Goyard; Pascal Roux; Tristan Rossignol; Christophe d'Enfert
The fungal pathogen Candida albicans forms therapeutically challenging biofilms on biomedical implants. Using a transcript profiling approach genes whose expression is favoured upon biofilm growth compared with planktonic growth have been previously identified. Knock‐out mutants for 38 of these genes were constructed, six of which showed a specific defect in biofilm formation. Among these genes, TYE7 that encodes a transcriptional activator of glycolytic genes in planktonic and biofilm growth conditions was identified as being required for the cohesiveness of biofilms. Biofilms formed by the tye7Δ knock‐out mutant showed a hyperfilamentous morphology, and growth of this mutant on solid medium under hypoxia was also associated with the production of hyphae. Similar to TYE7 inactivation, inhibition of glycolysis or ATP synthesis using oxalate or an uncoupler, respectively, triggered morphogenesis when a wild‐type strain was grown under hypoxia. These treatments also induced the formation of weakly cohesive, hyper‐filamentous biofilms by a wild‐type strain. Our data indicate that a hypoxic environment is generated within C. albicans biofilms and that continued biofilm development requires a Tye7p‐dependent upregulation of glycolytic genes necessary to adapt to hypoxia and prevent uncontrolled hyphal formation. Thus, adaptation to hypoxia is an integral component of biofilm formation in C. albicans.
Eukaryotic Cell | 2009
Tristan Rossignol; Chen Ding; Alessandro Guida; Christophe d'Enfert; Geraldine Butler
ABSTRACT The ability of Candida parapsilosis to form biofilms on indwelling medical devices is correlated with virulence. To identify genes that are important for biofilm formation, we used arrays representing approximately 4,000 open reading frames (ORFs) to compare the transcriptional profile of biofilm cells growing in a microfermentor under continuous flow conditions with that of cells in planktonic culture. The expression of genes involved in fatty acid and ergosterol metabolism and in glycolysis, is upregulated in biofilms. The transcriptional profile of C. parapsilosis biofilm cells resembles that of Candida albicans cells grown under hypoxic conditions. We therefore subsequently used whole-genome arrays (representing 5,900 ORFs) to determine the hypoxic response of C. parapsilosis and showed that the levels of expression of genes involved in the ergosterol and glycolytic pathways, together with several cell wall genes, are increased. Our results indicate that there is substantial overlap between the hypoxic responses of C. parapsilosis and C. albicans and that this may be important for biofilm development. Knocking out an ortholog of the cell wall gene RBT1, whose expression is induced both in biofilms and under conditions of hypoxia in C. parapsilosis, reduces biofilm development.
Antimicrobial Agents and Chemotherapy | 2007
Tristan Rossignol; Mary E. Logue; Kieran Reynolds; Muriel Grenon; Noel F. Lowndes; Geraldine Butler
ABSTRACT In Candida albicans, the quorum-sensing molecule farnesol inhibits the transition from yeast to hyphae but has no effect on cellular growth. We show that the addition of exogenous farnesol to cultures of Candida parapsilosis causes the cells to arrest, but not at a specific stage in the cell cycle. The cells are not susceptible to additional farnesol. However, the cells do eventually recover from arrest. Unlike in C. albicans, in C. parapsilosis sterols are localized to the tips of budding cells, and this polarization is disrupted by the addition of farnesol. We used the results of a genome sequence survey to design and manufacture partial genomic microarrays that were applied to determining the transcriptional response of C. parapsilosis to the presence of exogenous farnesol. In both C. albicans and C. parapsilosis, exposure to farnesol results in increased expression of the oxidoreductases GRP2 and ADH7 and altered expression of genes involved in sterol metabolism. There is no effect on expression of C. parapsilosis orthologs of genes involved in hyphal growth in C. albicans. Farnesol therefore differs significantly in its effects on C. parapsilosis and C. albicans.
PLOS ONE | 2012
Murielle Chauvel; Audrey Nesseir; Vitor Cabral; Sadri Znaidi; Sophie Goyard; Sophie Bachellier-Bassi; Arnaud Firon; Mélanie Legrand; Dorothée Diogo; Claire Naulleau; Tristan Rossignol; Christophe d’Enfert
Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community.
PLOS Pathogens | 2013
Sadri Znaidi; Audrey Nesseir; Murielle Chauvel; Tristan Rossignol; Christophe d'Enfert
Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as central “switch on/off” proteins to coordinate the regulation of C. albicans morphogenesis.
Antimicrobial Agents and Chemotherapy | 2011
Tristan Rossignol; Bridie Kelly; Curtis B. Dobson; Christophe d'Enfert
ABSTRACT The 18-amino-acid cationic, tryptophan-rich ApoEdpL-W peptide derived from human ApoE apolipoprotein was shown to have antifungal activity against pathogenic yeasts of the Candida genus (except C. glabrata). ApoEdpL-W was active against planktonic cells and early-stage biofilms but less active against mature biofilms, possibly because of its affinity for extracellular matrix beta-glucans. Moreover, ApoEdpL-W absorbed to medically relevant materials partially prevented the formation of biofilms on these materials. The exposure of C. albicans cells to sublethal doses of ApoEdpL-W triggered a transcriptional response reminiscent of that associated with the inactivation of the MYO5 gene required for endocytosis as well as the upregulation of amino acid transporter genes. A fluorescent derivative of ApoEdpL-W accumulated at the cytoplasmic membrane and subsequently was translocated to the vacuole. Strikingly, the inactivation of MYO5 or addition of latrunculin, an inhibitor of endocytosis, prevented the vacuolar accumulation of fluorescein-labeled ApoEdpL-W and reduced the antifungal activity of ApoEdpL-W. This, together with the insensitivity of ApoEdpL-W to alterations in membrane fluidity and high salt, suggested that the ApoEdpL-W mode of action was dependent upon vacuolar targeting and differed significantly from that of other antifungal peptides, such as Histatin-5 and Magainin 2.
Nucleic Acids Research | 2007
Tristan Rossignol; Pierre Lechat; Christina Cuomo; Qiandong Zeng; Ivan Moszer; Christophe d’Enfert
CandidaDB (http://genodb.pasteur.fr/CandidaDB) was established in 2002 to provide the first genomic database for the human fungal pathogen Candida albicans. The availability of an increasing number of fully or partially completed genome sequences of related fungal species has opened the path for comparative genomics and prompted us to migrate CandidaDB into a multi-genome database. The new version of CandidaDB houses the latest versions of the genomes of C. albicans strains SC5314 and WO-1 along with six genome sequences from species closely related to C. albicans that all belong to the CTG clade of Saccharomycotina—Candida tropicalis, Candida (Clavispora) lusitaniae, Candida (Pichia) guillermondii, Lodderomyces elongisporus, Debaryomyces hansenii, Pichia stipitis—and the reference Saccharomyces cerevisiae genome. CandidaDB includes sequences coding for 54 170 proteins with annotations collected from other databases, enriched with illustrations of structural features and functional domains and data of comparative analyses. In order to take advantage of the integration of multiple genomes in a unique database, new tools using pre-calculated or user-defined comparisons have been implemented that allow rapid access to comparative analysis at the genomic scale.
PLOS Pathogens | 2014
Vitor Cabral; Sadri Znaidi; Louise A. Walker; Hélène Martin-Yken; Etienne Dague; Mélanie Legrand; Keunsook K. Lee; Murielle Chauvel; Arnaud Firon; Tristan Rossignol; Mathias L. Richard; Carol A. Munro; Sophie Bachellier-Bassi; Christophe d'Enfert
Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence.
Nucleic Acids Research | 2018
Mélanie Legrand; Sophie Bachellier-Bassi; Keunsook K. Lee; Yogesh Chaudhari; Hélène Tournu; Laurence Arbogast; Hélène Boyer; Murielle Chauvel; Vitor Cabral; Corinne Maufrais; Audrey Nesseir; Irena Maslanka; Emmanuelle Permal; Tristan Rossignol; Louise A. Walker; Ute Zeidler; Sadri Znaidi; Floris Schoeters; Charlotte Majgier; Renaud A Julien; Laurence Ma; Magali Tichit; Christiane Bouchier; Patrick Van Dijck; Carol A. Munro; Christophe d’Enfert
Abstract The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein–protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.