Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Bouchat is active.

Publication


Featured researches published by Sophie Bouchat.


Retrovirology | 2013

HIV-1 transcription and latency: an update

Carine Van Lint; Sophie Bouchat; Alessandro Marcello

Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.


PLOS Pathogens | 2015

An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.

Gilles Darcis; Anna Kula; Sophie Bouchat; Koh Fujinaga; Francis Corazza; Amina Ait-Ammar; Nadège Delacourt; Adeline Mélard; Kabamba Kabeya; Caroline Vanhulle; Benoît Van Driessche; Jean Stéphane Gatot; Thomas Cherrier; Luiz Francisco Pianowski; Lucio Gama; Christian Schwartz; Jorge Vila; Arsène Burny; Nathan Clumeck; Michel Moutschen; Stéphane De Wit; B. Matija Peterlin; Christine Rouzioux; Olivier Rohr; Carine Van Lint

The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.


AIDS | 2012

Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4+ T cells from HIV-1-infected HAART-treated patients.

Sophie Bouchat; Jean-Stéphane Gatot; Kabamba Kabeya; Christelle Cardona; Laurence Colin; Georges Herbein; Stéphane De Wit; Nathan Clumeck; Olivier Lambotte; Christine Rouzioux; Olivier Rohr; Carine Van Lint

Objective:Reactivation of HIV-1 expression in persistent reservoirs together with an efficient HAART has been proposed as an adjuvant therapy aimed at reaching a functional cure for HIV. Previously, H3K9 methylation was shown to play a major role in chromatin-mediated repression of the HIV-1 promoter. Here, we evaluated the therapeutic potential of histone methyltransferase inhibitors (HMTIs) in reactivating HIV-1 from latency. Design:We evaluated the reactivation potential of two specific HMTIs (chaetocin and BIX-01294, two specific inhibitors of Suv39H1 and G9a, respectively) in ex-vivo cultures of resting CD4+ T cells isolated from HIV-1-infected HAART-treated individuals. Methods:We measured HIV-1 recovery in ex-vivo cultures treated with an HMTI alone or in combination with other HIV-1 inducers (in absence of IL-2 and of allogenic stimulation) of CD8+-depleted peripheral blood mononuclear cells (PBMCs) or of resting CD4+ T cells isolated from 67 HIV-infected, HAART-treated patients with undetectable viral load. Results:We demonstrated, for the first time, that chaetocin induced HIV-1 recovery in 50% of CD8+-depleted PBMCs cultures and in 86% of resting CD4+ T-cell cultures isolated from HIV-1-infected, HAART-treated patients, whereas BIX-01294 reactivated HIV-1 expression in 80% of resting CD4+ T-cell cultures isolated from similar patients. Moreover, we showed that combinatory treatments including one HMTI and either the histone deacetylase inhibitor suberoylanilide hydroxamic acid or the non-tumor-promoting NF-&kgr;B inducer prostratin had a higher reactivation potential than these compounds alone. Conclusion:Our results constitute a proof-of-concept for the therapeutic potential of HMTIs in strategies aiming at reducing the pool of latent reservoirs in HIV-infected, HAART-treated patient.


Embo Molecular Medicine | 2016

Sequential treatment with 5-aza-2′-deoxycytidine and deacetylase inhibitors reactivates HIV-1

Sophie Bouchat; Nadège Delacourt; Anna Kula; Gilles Darcis; Benoît Van Driessche; Francis Corazza; Jean-Stéphane Gatot; Adeline Mélard; Caroline Vanhulle; Kabamba Kabeya; Marion Pardons; Véronique Avettand-Fenoel; Nathan Clumeck; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Carine Van Lint

Reactivation of HIV gene expression in latently infected cells together with an efficient cART has been proposed as an adjuvant therapy aimed at eliminating/decreasing the reservoir size. Results from HIV clinical trials using deacetylase inhibitors (HDACIs) question the efficiency of these latency‐reversing agents (LRAs) used alone and underline the need to evaluate other LRAs in combination with HDACIs. Here, we evaluated the therapeutic potential of a demethylating agent (5‐AzadC) in combination with clinically tolerable HDACIs in reactivating HIV‐1 from latency first in vitro and next ex vivo. We showed that a sequential treatment with 5‐AzadC and HDACIs was more effective than the corresponding simultaneous treatment both in vitro and ex vivo. Interestingly, only two of the sequential LRA combinatory treatments tested induced HIV‐1 particle recovery in a higher manner than the drugs alone ex vivo and at concentrations lower than the human tolerable plasmatic concentrations. Taken together, our data reveal the benefit of using combinations of 5‐AzadC with an HDACI and, for the first time, the importance of treatment time schedule for LRA combinations in order to reactivate HIV.


Biochemical Pharmacology | 2017

On the way to find a cure: Purging latent HIV-1 reservoirs

Christian Schwartz; Sophie Bouchat; Céline Marban; Virginie Gautier; Carine Van Lint; Olivier Rohr; Valentin Le Douce

Graphical abstract Figure. No Caption available. ABSTRACT Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV‐1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV‐1 reservoir might lead to a cure or a remission. The most studied strategy is the so called “shock and kill” therapy. This strategy is based on reactivation of dormant viruses from the latently‐infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the “shock and kill” therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.


Scientific Reports | 2016

Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line.

Amit Kumar; Wasim Abbas; Laurence Colin; Kashif Aziz Khan; Sophie Bouchat; Audrey Varin; Anis Larbi; Jean-Stéphane Gatot; Kabamba Kabeya; Caroline Vanhulle; Nadège Delacourt; Sébastien Pasquereau; Laurie Coquard; Alexandra Borch; Renate König; Nathan Clumeck; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Tamas Fulop; Carine Van Lint; Georges Herbein

Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine473 and threonine308. In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients.


AIDS | 2017

Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir.

Gilles Darcis; Sophie Bouchat; Anna Kula; Benoît Van Driessche; Nadège Delacourt; Caroline Vanhulle; Véronique Avettand-Fenoel; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Carine Van Lint

Objective: HIV-1 reservoirs are the major hurdle to virus clearance in combination antiretroviral therapy (cART)-treated patients. An approach to eradicating HIV-1 involves reversing latency in cART-treated patients to make latent cells visible to the host immune system. Stimulation of patient cell cultures with latency-reversing agents (LRAs) ex vivo results in heterogeneous responses among HIV-infected patients. Determinants of this heterogeneity are unknown and consequently important to determine. Design and methods: Here, we grouped and retrospectively analyzed the data from our two recent HIV-1 reactivation studies to investigate the role of the HIV-1 reservoir size in the reactivation capacity by LRAs in ex vivo cultures of CD8+-depleted peripheral blood mononuclear cells (PBMCs) isolated from 54 cART-treated patients and of resting CD4+ T cells isolated from 30 cART-treated patients. Results: Our results established a statistically relevant positive correlation between the HIV-1 reservoir size measured by total cell-associated HIV-1 DNA and the frequency of positive HIV-1 recovery measurements in response to various LRAs in ex vivo cultures of cells isolated from cART-treated HIV+ aviremic patients. HIV-1 reservoir size also correlated with the extracellular HIV-1 RNA median level measured in supernatants of cell cultures following LRA treatments. However, we identified HIV+ patients whose positive measurements frequency and median level of extracellular HIV-1 RNA deviated from linearity relative to their corresponding HIV reservoir size. Conclusion: We demonstrated that the reservoir size is one predictive marker of LRA effectiveness but this parameter alone is not sufficient. The identification of other predictive markers is necessary to predict the success of HIV anti-latency approaches.


Current Topics in Microbiology and Immunology | 2017

Molecular Control of HIV and SIV Latency.

Gilles Darcis; Benoît Van Driessche; Sophie Bouchat; Frank Kirchhoff; Carine Van Lint

The HIV latent reservoirs are considered as the main hurdle to viral eradication. Numerous mechanisms lead to the establishment of HIV latency and act at the transcriptional and post-transcriptional levels. A better understanding of latency is needed in order to ultimately achieve a cure for HIV. The mechanisms underlying latency vary between patients, tissues, anatomical compartments, and cell types. From this point of view, simian immunodeficiency virus (SIV) infection and the use of nonhuman primate (NHP) models that recapitulate many aspects of HIV-associated latency establishment and disease progression are essential tools since they allow extensive tissue sampling as well as a control of infection parameters (virus type, dose, route, and time).


Scientific Reports | 2016

Limited HIV-1 Reactivation in Resting CD4+ T cells from Aviremic Patients under Protease Inhibitors.

Amit Kumar; Wasim Abbas; Sophie Bouchat; Jean-Stéphane Gatot; Sébastien Pasquereau; Kabamba Kabeya; Nathan Clumeck; Stéphane De Wit; Carine Van Lint; Georges Herbein

A latent viral reservoir that resides in resting CD4+ T cells represents a major barrier for eradication of HIV infection. We test here the impact of HIV protease inhibitor (PI) based combination anti-retroviral therapy (cART) over nonnucleoside reverse transcriptase inhibitor (NNRTI)-based cART on HIV-1 reactivation and integration in resting CD4+ T cells. This is a prospective cohort study of patients with chronic HIV-1 infection treated with conventional cART with an undetectable viremia. We performed a seven-year study of 47 patients with chronic HIV-infection treated with cART regimens and with undetectable plasma HIV-1 RNA levels for at least 1 year. Of these 47 patients treated with cART, 24 were treated with a PI-based regimen and 23 with a NNRTI-based regimen as their most recent treatment for more than one year. We evaluated the HIV-1 reservoir using reactivation assay and integrated HIV-1 DNA, respectively, in resting CD4+ T cells. Resting CD4+ T cells isolated from PI-treated patients compared to NNRTI-treated patients showed a limited HIV-1 reactivation upon T-cell stimulation (p = 0·024) and a lower level of HIV-1 integration (p = 0·024). Our study indicates that PI-based cART could be more efficient than NNRTI-based cART for limiting HIV-1 reactivation in aviremic chronically infected patients.


Science Advances | 2018

Immunity drives TET1 regulation in cancer through NF-κB

Evelyne Collignon; Annalisa Canale; Clémence Al Wardi; Martin Bizet; Emilie Calonne; Sarah Dedeurwaerder; Soizic Garaud; C. Naveaux; Whitney Barham; Andrew J. Wilson; Sophie Bouchat; Pascale Hubert; Carine Van Lint; Fiona E. Yull; Christos Sotiriou; Karen Willard-Gallo; Agnès Noël; François Fuks

A new paradigm has emerged showing that the immune system can influence cancer cell epigenetics through NF-κB–mediated regulation of TET1. Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.

Collaboration


Dive into the Sophie Bouchat's collaboration.

Top Co-Authors

Avatar

Carine Van Lint

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Olivier Rohr

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Caroline Vanhulle

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Darcis

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Jean-Stéphane Gatot

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Kabamba Kabeya

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Nadège Delacourt

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Nathan Clumeck

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Benoît Van Driessche

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge