Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carine Van Lint is active.

Publication


Featured researches published by Carine Van Lint.


Nature Reviews Immunology | 2012

Towards an HIV cure: a global scientific strategy

Steven G. Deeks; Brigitte Autran; Ben Berkhout; Monsef Benkirane; Scott Cairns; Nicolas Chomont; Tae Wook Chun; Melissa Churchill; Michele Di Mascio; Christine Katlama; Alain Lafeuillade; Alan Landay; Michael M. Lederman; Sharon R. Lewin; Frank Maldarelli; David J. Margolis; Martin Markowitz; Javier Martinez-Picado; James I. Mullins; John W. Mellors; Santiago Moreno; Una O'Doherty; Sarah Palmer; Marie Capucine Penicaud; Matija Peterlin; Guido Poli; Jean-Pierre Routy; Christine Rouzioux; Guido Silvestri; Mario Stevenson

Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the groups recommended key goals for the international community.


The EMBO Journal | 1999

HIV-1 tat transcriptional activity is regulated by acetylation.

Rosemary Kiernan; Caroline Vanhulle; Lou Schiltz; Emmanuelle Adam; Hua Xiao; Frédéric Maudoux; Claire Calomme; Arsène Burny; Yoshihiro Nakatani; Kuan Teh Jeang; Monsef Benkirane; Carine Van Lint

The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans‐activation responsive region (TAR). We and others have shown that trans‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo, histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.


The EMBO Journal | 2007

Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing.

Céline Marban; Franck Dequiedt; Stéphane de Walque; Laetitia Redel; Carine Van Lint; Dominique Aunis; Olivier Rohr

Following entry and reverse transcription, the HIV‐1 genome is integrated into the host genome. In contrast to productively infected cells, latently infected cells frequently harbor HIV‐1 genomes integrated in heterochromatic structures, allowing persistence of transcriptionally silent proviruses. Microglial cells are the main HIV‐1 target cells in the central nervous system and constitute an important reservoir for viral pathogenesis. In the present work, we show that, in microglial cells, the co‐repressor COUP‐TF interacting protein 2 (CTIP2) recruits a multienzymatic chromatin‐modifying complex and establishes a heterochromatic environment at the HIV‐1 promoter. We report that CTIP2 recruits histone deacetylase (HDAC)1 and HDAC2 to promote local histone H3 deacetylation at the HIV‐1 promoter region. In addition, DNA‐bound CTIP2 also associates with the histone methyltransferase SUV39H1, which increases local histone H3 lysine 9 methylation. This allows concomitant recruitment of HP1 proteins to the viral promoter and formation of local heterochromatin, leading to HIV‐1 silencing. Altogether, our findings uncover new therapeutic opportunities for purging latent HIV‐1 viruses from their cellular reservoirs.


Science | 2010

HIV Persistence and the Prospect of Long-Term Drug-Free Remissions for HIV-Infected Individuals

Didier Trono; Carine Van Lint; Christine Rouzioux; Eric Verdin; Françoise Barré-Sinoussi; Tae-Wook Chun; Nicolas Chomont

HIV infection can persist in spite of efficacious antiretroviral therapies. Although incomplete inhibition of viral replication may contribute to this phenomenon, this is largely due to the early establishment of a stable reservoir of latently infected cells. Thus, life-long antiviral therapy may be needed to control HIV. Such therapy is prone to drug resistance and cumulative side effects and is an unbearable financial burden for regions of the world hit hardest by the epidemic. This review discusses our current understanding of HIV persistence and the limitations of potential approaches to eradicate the virus and accordingly pleads for a joint multidisciplinary effort toward two highly related goals: the development of an HIV prophylactic vaccine and the achievement of long-term drug-free remissions in HIV-infected individuals.


PLOS Pathogens | 2009

CpG methylation controls reactivation of HIV from latency.

Jana Blazkova; Katerina Trejbalova; Françoise Gondois-Rey; Philippe Halfon; Patrick Philibert; Allan Guiguen; Eric Verdin; Daniel Olive; Carine Van Lint; Jiri Hejnar; Ivan Hirsch

DNA methylation of retroviral promoters and enhancers localized in the provirus 5′ long terminal repeat (LTR) is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5′ LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5′ LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5′ LTR in viremic patients. However, even dense methylation of the HIV-1 5′LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-α, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by CpG methylation might have important implications for strategies aimed at eradicating HIV-1 infection.


Retrovirology | 2013

HIV-1 transcription and latency: an update

Carine Van Lint; Sophie Bouchat; Alessandro Marcello

Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.


Retrovirology | 2009

Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies.

Laurence Colin; Carine Van Lint

The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.


Journal of Experimental Medicine | 2004

A Defect in Nucleosome Remodeling Prevents IL-12(p35) Gene Transcription in Neonatal Dendritic Cells

Stanislas Goriely; Carine Van Lint; Réza Dadkhah; Myriam Libin; Dominique De Wit; Dominique Demonte; Fabienne Willems; Michel Goldman

To gain insight into the inability of newborns to mount efficient Th1 responses, we analyzed the molecular basis of defective IL-12(p35) expression in human neonatal monocyte-derived dendritic cells (DCs). Determination of IL-12(p35) pre-mRNA levels by real-time RT-PCR revealed that transcriptional activation of the gene in lipopolysaccharide-stimulated neonatal DCs was strongly impaired compared with adult DCs. We next showed that p50/p65 and p65/p65 dimers interact with kB#1 site, a critical cis-acting element of the IL-12(p35) promoter. We found that LPS-induced p65 activation was similar in adult and newborn DCs. Likewise, in vitro binding activity to the Sp1#1 site, previously shown to be critical for IL-12(p35) gene activation, did not differ in adults and newborns. Since the accessibility to this Sp1#1 site was found to depend on nucleosome remodeling, we used a chromatin accessibility assay to compare remodeling of the relevant nucleosome (nuc-2) in adult and neonatal DCs. We observed that nuc-2 remodeling in neonatal DCs was profoundly impaired in response to lipopolysaccharide. Both nuc-2 remodeling and IL-12(p35) gene transcription were restored upon addition of recombinant interferon-γ. We conclude that IL-12(p35) transcriptional repression in neonatal DCs takes place at the chromatin level.


Journal of Virology | 2002

Synergistic Activation of Human Immunodeficiency Virus Type 1 Promoter Activity by NF-κB and Inhibitors of Deacetylases: Potential Perspectives for the Development of Therapeutic Strategies

Vincent Quivy; Emmanuelle Adam; Yves Collette; Dominique Demonte; Alain Chariot; Caroline Vanhulle; Ben Berkhout; Rémy Castellano; Yvan de Launoit; Arsène Burny; Jacques Piette; Vincent Bours; Carine Van Lint

ABSTRACT The transcription factor NF-κB plays a central role in the human immunodeficiency virus type 1 (HIV-1) activation pathway. HIV-1 transcription is also regulated by protein acetylation, since treatment with deacetylase inhibitors such as trichostatin A (TSA) or sodium butyrate (NaBut) markedly induces HIV-1 transcriptional activity of the long terminal repeat (LTR) promoter. Here, we demonstrate that TSA (NaBut) synergized with both ectopically expressed p50/p65 and tumor necrosis factor alpha/SF2 (TNF)-induced NF-κB to activate the LTR. This was confirmed for LTRs from subtypes A through G of the HIV-1 major group, with a positive correlation between the number of κB sites present in the LTRs and the amplitude of the TNF-TSA synergism. Mechanistically, TSA (NaBut) delayed the cytoplasmic recovery of the inhibitory protein IκBα. This coincided with a prolonged intranuclear presence and DNA binding activity of NF-κB. The physiological relevance of the TNF-TSA (NaBut) synergism was shown on HIV-1 replication in both acutely and latently HIV-infected cell lines. Therefore, our results open new therapeutic strategies aimed at decreasing or eliminating the pool of latently HIV-infected reservoirs by forcing viral expression.


Oncogene | 2001

Inhibition of the Nf-Kappa B Transcription Factor Increases Bax Expression in Cancer Cell Lines

Mohamed Bentires-Alj; Emmanuel Dejardin; Patrick Viatour; Carine Van Lint; Barbara A. Froesch; John C. Reed; Marie-Paule Merville; Vincent Bours

The NF-κB transcription factor has been shown to inhibit apoptosis in several experimental systems. We therefore investigated whether the expression of the Bax proapoptotic protein could be influenced by NF-κB activity. Increased Bax protein expression was detected in HCT116, OVCAR-3 and MCF7 cells stably expressing a mutated unresponsive IκB-α inhibitory protein that blocks NF-κB activity. Northern blots showed that bax mRNA expression was increased as a consequence of mutated IκB-α expression in HCT116 cells. A careful examination of the human bax gene promoter sequence showed three putative binding sites for NF-κB, and the κB2 site at position -687 could indeed bind NF-κB complexes in vitro. Transient transfection of a bax promoter luciferase construct in HCT116 cells showed that NF-κB proteins could partially inhibit the transactivation of the bax promoter by p53. Mutations or deletions of the κB sites, including κB2, indicated that this NF-κB-dependent inhibitory effect did not require NF-κB DNA-binding, and was thus an indirect effect. However, cotransfection of expression vectors for several known cofactors failed to identify a competition between p53 and NF-κB for a transcription coactivator. Our findings thus demonstrate for the first time that NF-κB regulates, through an indirect pathway, the bax gene expression.

Collaboration


Dive into the Carine Van Lint's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Vanhulle

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Olivier Rohr

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Benoît Van Driessche

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Eric Verdin

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Vincent Quivy

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Dominique Demonte

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Nadège Delacourt

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Sophie Bouchat

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge