Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Vanhulle is active.

Publication


Featured researches published by Caroline Vanhulle.


The EMBO Journal | 1999

HIV-1 tat transcriptional activity is regulated by acetylation.

Rosemary Kiernan; Caroline Vanhulle; Lou Schiltz; Emmanuelle Adam; Hua Xiao; Frédéric Maudoux; Claire Calomme; Arsène Burny; Yoshihiro Nakatani; Kuan Teh Jeang; Monsef Benkirane; Carine Van Lint

The human immunodeficiency virus (HIV) trans‐ activator protein, Tat, stimulates transcription from the viral long‐terminal repeats (LTR) through an RNA hairpin element, trans‐activation responsive region (TAR). We and others have shown that trans‐activator protein (Tat)‐associated histone acetyltransferases (TAHs), p300 and p300/CBP‐associating factor (PCAF), assist functionally in the activation of chromosomally integrated HIV‐1 LTR. Here, we show that p300 and PCAF also directly acetylate Tat. We defined two sites of acetylation located in different functional domains of Tat. p300 acetylated Lys50 in the TAR RNA binding domain, while PCAF acetylated Lys28 in the activation domain of Tat. In support of a functional role for acetylation in vivo, histone deacetylase inhibitor (trichostatin A) synergized with Tat in transcriptional activation of the HIV‐1 LTR. Synergism was TAR‐dependent and required the intact presence of both Lys28 and Lys50. Mechanistically, acetylation at Lys28 by PCAF enhanced Tat binding to the Tat‐associated kinase, CDK9/P‐TEFb, while acetylation by p300 at Lys50 of Tat promoted the dissociation of Tat from TAR RNA that occurs during early transcription elongation. These data suggest that acetylation of Tat regulates two discrete and functionally critical steps in transcription, binding to an RNAP II CTD‐kinase and release of Tat from TAR RNA.


Journal of Virology | 2002

Synergistic Activation of Human Immunodeficiency Virus Type 1 Promoter Activity by NF-κB and Inhibitors of Deacetylases: Potential Perspectives for the Development of Therapeutic Strategies

Vincent Quivy; Emmanuelle Adam; Yves Collette; Dominique Demonte; Alain Chariot; Caroline Vanhulle; Ben Berkhout; Rémy Castellano; Yvan de Launoit; Arsène Burny; Jacques Piette; Vincent Bours; Carine Van Lint

ABSTRACT The transcription factor NF-κB plays a central role in the human immunodeficiency virus type 1 (HIV-1) activation pathway. HIV-1 transcription is also regulated by protein acetylation, since treatment with deacetylase inhibitors such as trichostatin A (TSA) or sodium butyrate (NaBut) markedly induces HIV-1 transcriptional activity of the long terminal repeat (LTR) promoter. Here, we demonstrate that TSA (NaBut) synergized with both ectopically expressed p50/p65 and tumor necrosis factor alpha/SF2 (TNF)-induced NF-κB to activate the LTR. This was confirmed for LTRs from subtypes A through G of the HIV-1 major group, with a positive correlation between the number of κB sites present in the LTRs and the amplitude of the TNF-TSA synergism. Mechanistically, TSA (NaBut) delayed the cytoplasmic recovery of the inhibitory protein IκBα. This coincided with a prolonged intranuclear presence and DNA binding activity of NF-κB. The physiological relevance of the TNF-TSA (NaBut) synergism was shown on HIV-1 replication in both acutely and latently HIV-infected cell lines. Therefore, our results open new therapeutic strategies aimed at decreasing or eliminating the pool of latently HIV-infected reservoirs by forcing viral expression.


PLOS Pathogens | 2015

An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.

Gilles Darcis; Anna Kula; Sophie Bouchat; Koh Fujinaga; Francis Corazza; Amina Ait-Ammar; Nadège Delacourt; Adeline Mélard; Kabamba Kabeya; Caroline Vanhulle; Benoît Van Driessche; Jean Stéphane Gatot; Thomas Cherrier; Luiz Francisco Pianowski; Lucio Gama; Christian Schwartz; Jorge Vila; Arsène Burny; Nathan Clumeck; Michel Moutschen; Stéphane De Wit; B. Matija Peterlin; Christine Rouzioux; Olivier Rohr; Carine Van Lint

The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.


Molecular and Cellular Biology | 2003

Potentiation of Tumor Necrosis Factor-Induced NF-κB Activation by Deacetylase Inhibitors Is Associated with a Delayed Cytoplasmic Reappearance of IκBα

Emmanuelle Adam; Vincent Quivy; Françoise Bex; Alain Chariot; Yves Collette; Caroline Vanhulle; Sonia Schoonbroodt; Véronique Goffin; Thi Lien-Anh Nguyen; Geoffrey Gloire; Géraldine Carrard; Bertrand Friguet; Yvan de Launoit; Arsène Burny; Vincent Bours; Jacques Piette; Carine Van Lint

Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-B. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium butyrate (NaBut) potentiated TNF-induced expression of several natural NF-B-driven promoters. This transcriptional synergism observed between TNF and TSA (or NaBut) required intact B sites in all promoters tested and was biologically relevant as demonstrated by RNase protection on two instances of endogenous NF-B-regulated gene transcription. Importantly, TSA prolonged both TNF-induced DNA-binding activity and the presence of NF-B in the nucleus. We showed that the p65 subunit of NF-B was acetylated in vivo. However, this acetylation was weak, suggesting that other mechanisms could be implicated in the potentiated binding and transactivation activities of NF-B after TNF plus TSA versus TNF treatment. Western blot and immunofluorescence confocal microscopy experiments revealed a delay in the cytoplasmic reappearance of the IB inhibitor that correlated temporally with the prolonged intranuclear binding and presence of NF-B. This delay was due neither to a defect in IB mRNA production nor to a nuclear retention of IB but was rather due to a persistent proteasome-mediated degradation of IB. A prolongation of IB kinase activity could explain, at least partially, the delayed IB cytoplasmic reappearance observed in presence of TNF plus TSA.


Embo Molecular Medicine | 2016

Sequential treatment with 5-aza-2′-deoxycytidine and deacetylase inhibitors reactivates HIV-1

Sophie Bouchat; Nadège Delacourt; Anna Kula; Gilles Darcis; Benoît Van Driessche; Francis Corazza; Jean-Stéphane Gatot; Adeline Mélard; Caroline Vanhulle; Kabamba Kabeya; Marion Pardons; Véronique Avettand-Fenoel; Nathan Clumeck; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Carine Van Lint

Reactivation of HIV gene expression in latently infected cells together with an efficient cART has been proposed as an adjuvant therapy aimed at eliminating/decreasing the reservoir size. Results from HIV clinical trials using deacetylase inhibitors (HDACIs) question the efficiency of these latency‐reversing agents (LRAs) used alone and underline the need to evaluate other LRAs in combination with HDACIs. Here, we evaluated the therapeutic potential of a demethylating agent (5‐AzadC) in combination with clinically tolerable HDACIs in reactivating HIV‐1 from latency first in vitro and next ex vivo. We showed that a sequential treatment with 5‐AzadC and HDACIs was more effective than the corresponding simultaneous treatment both in vitro and ex vivo. Interestingly, only two of the sequential LRA combinatory treatments tested induced HIV‐1 particle recovery in a higher manner than the drugs alone ex vivo and at concentrations lower than the human tolerable plasmatic concentrations. Taken together, our data reveal the benefit of using combinations of 5‐AzadC with an HDACI and, for the first time, the importance of treatment time schedule for LRA combinations in order to reactivate HIV.


PLOS ONE | 2011

The AP-1 Binding Sites Located in the pol Gene Intragenic Regulatory Region of HIV-1 Are Important for Viral Replication

Laurence Colin; Nathalie Vandenhoudt; Stéphane de Walque; Benoı̂t Van Driessche; Anna Bergamaschi; Valérie Martinelli; Thomas Cherrier; Caroline Vanhulle; Allan Guiguen; Annie David; Arsène Burny; Georges Herbein; Gianfranco Pancino; Olivier Rohr; Carine Van Lint

Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1) genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the 5105 fragment. These fragments (5103 and 5105) both exhibit a phorbol 12-myristate 13-acetate (PMA)-inducible enhancer activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1 binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and JunD to this fragment located at the end of the pol gene. Functional analyses demonstrated that the intragenic AP-1 binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. Moreover, infection of T-lymphoid Jurkat and promonocytic U937 cells with wild-type and mutant viruses demonstrated that mutations of the intragenic AP-1 sites individually or in combination altered HIV-1 replication. Importantly, mutations of the three intragenic AP-1 sites led to a decreased in vivo recruitment of RNA polymerase II to the viral promoter, strongly supporting that the deleterious effect of these mutations on viral replication occurs, at least partly, at the transcriptional level. Single-round infections of monocyte-derived macrophages confirmed the importance of intragenic AP-1 sites for HIV-1 infectivity.


Journal of Biological Chemistry | 2010

DNA Cytosine Methylation in the Bovine Leukemia Virus Promoter Is Associated with Latency in a Lymphoma-derived B-cell Line POTENTIAL INVOLVEMENT OF DIRECT INHIBITION OF cAMP-RESPONSIVE ELEMENT (CRE)-BINDING PROTEIN/CRE MODULATOR/ACTIVATION TRANSCRIPTION FACTOR BINDING

Valérie Pierard; Allan Guiguen; Laurence Colin; Gaëlle Wijmeersch; Caroline Vanhulle; Benoît Van Driessche; Ann Dekoninck; Jana Blazkova; Christelle Cardona; Makram Merimi; Valérie Vierendeel; Claire Calomme; Thi Lien-Anh Nguyen; Michèle Nuttinck; Jean-Claude Twizere; Richard Kettmann; Daniel Portetelle; Arsène Burny; Ivan Hirsch; Olivier Rohr; Carine Van Lint

Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2′-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5′-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator TaxBLV decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267LTaxSN 5′-LTR compared with the L267 5′-LTR. Interestingly, DNA methylation inhibitors and TaxBLV synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the −154 or −129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at −129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5′-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.


Cloning and Stem Cells | 2004

Gene activation and gene silencing: a subtle equilibrium.

Vincent Quivy; Claire Calomme; Ann Dekoninck; Dominique Demonte; Françoise Bex; Isabelle Lamsoul; Caroline Vanhulle; Arsène Burny; Carine Van Lint

The genetic make-up of a cell resides entirely in its DNA. Now that the nucleotide sequence of several genomes has been determined, the major challenging problem is to understand how cell differentiation, proliferation or death are controlled. Major steps include analysis of the determinants of the cell cycle, the unravelling of RNAs and proteins involved in the control of gene expression and the dissection of the protein-destruction machinery. The successive steps to be considered are transcription of RNA on the DNA template, mRNA stabilization or degradation, and mRNA translation and protein localization in the right cell compartment. Gene expression or gene silencing is the result of many DNA-RNA-protein interactions and chromatin is among the key regulators of gene expression. Open chromatin (euchromatin) allows expression of the DNA message. This chromatin structure is generally characterized by the presence on the gene promoters of transcription complexes associated with histone acetyltransferases (HATs). On the contrary, closed chromatin (heterochromatin) is poorly acetylated and more condensed. It contains histone deacetylases (HDACs), potentially associated with DNA methyltransferases (DNMTs). DNMT activity leads to methylation and silencing of the DNA. Thus, a major problem in the field of gene regulation resides in understanding chromatin structure at each promoter, a formidable task for the years to come.


Scientific Reports | 2016

Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line.

Amit Kumar; Wasim Abbas; Laurence Colin; Kashif Aziz Khan; Sophie Bouchat; Audrey Varin; Anis Larbi; Jean-Stéphane Gatot; Kabamba Kabeya; Caroline Vanhulle; Nadège Delacourt; Sébastien Pasquereau; Laurie Coquard; Alexandra Borch; Renate König; Nathan Clumeck; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Tamas Fulop; Carine Van Lint; Georges Herbein

Akt signaling plays a central role in many biological processes, which are key players in human immunodeficiency virus 1 (HIV-1) pathogenesis. We found that Akt interacts with HIV-1 Nef protein. In primary T cells treated with exogenous Nef or acutely infected with Nef-expressing HIV-1 in vitro, Akt became phosphorylated on serine473 and threonine308. In vitro, Akt activation mediated by Nef in T-cells was blocked by HIV protease inhibitors (PI), but not by reverse transcriptase inhibitors (RTI). Ex vivo, we found that the Akt pathway is hyperactivated in peripheral blood lymphocytes (PBLs) from cART naïve HIV-1-infected patients. PBLs isolated from PI-treated patients, but not from RTI-treated patients, exhibited decreased Akt activation, T-cell proliferation and IL-2 production. We found that PI but not RTI can block HIV-1 reactivation in latently infected J-Lat lymphoid cells stimulated with various stimuli. Using luciferase measurement, we further confirmed that Nef-mediated reactivation of HIV-1 from latency in 1G5 cells was blocked by PI parallel to decreased Akt activation. Our results indicate that PI-mediated blockade of Akt activation could impact the HIV-1 reservoir and support the need to further assess the therapeutic use of HIV-1 PI in order to curtail latently infected cells in HIV-1-infected patients.


AIDS | 2017

Reactivation capacity by latency-reversing agents ex vivo correlates with the size of the HIV-1 reservoir.

Gilles Darcis; Sophie Bouchat; Anna Kula; Benoît Van Driessche; Nadège Delacourt; Caroline Vanhulle; Véronique Avettand-Fenoel; Stéphane De Wit; Olivier Rohr; Christine Rouzioux; Carine Van Lint

Objective: HIV-1 reservoirs are the major hurdle to virus clearance in combination antiretroviral therapy (cART)-treated patients. An approach to eradicating HIV-1 involves reversing latency in cART-treated patients to make latent cells visible to the host immune system. Stimulation of patient cell cultures with latency-reversing agents (LRAs) ex vivo results in heterogeneous responses among HIV-infected patients. Determinants of this heterogeneity are unknown and consequently important to determine. Design and methods: Here, we grouped and retrospectively analyzed the data from our two recent HIV-1 reactivation studies to investigate the role of the HIV-1 reservoir size in the reactivation capacity by LRAs in ex vivo cultures of CD8+-depleted peripheral blood mononuclear cells (PBMCs) isolated from 54 cART-treated patients and of resting CD4+ T cells isolated from 30 cART-treated patients. Results: Our results established a statistically relevant positive correlation between the HIV-1 reservoir size measured by total cell-associated HIV-1 DNA and the frequency of positive HIV-1 recovery measurements in response to various LRAs in ex vivo cultures of cells isolated from cART-treated HIV+ aviremic patients. HIV-1 reservoir size also correlated with the extracellular HIV-1 RNA median level measured in supernatants of cell cultures following LRA treatments. However, we identified HIV+ patients whose positive measurements frequency and median level of extracellular HIV-1 RNA deviated from linearity relative to their corresponding HIV reservoir size. Conclusion: We demonstrated that the reservoir size is one predictive marker of LRA effectiveness but this parameter alone is not sufficient. The identification of other predictive markers is necessary to predict the success of HIV anti-latency approaches.

Collaboration


Dive into the Caroline Vanhulle's collaboration.

Top Co-Authors

Avatar

Carine Van Lint

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Arsène Burny

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Benoît Van Driessche

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Olivier Rohr

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Nadège Delacourt

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Anna Kula

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Sophie Bouchat

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Collette

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Dominique Demonte

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge